引言:心脏主要通过脂肪酸 (FA) 氧化获取能量。然而,脂质摄取与脂肪酸氧化的脱钩会导致心脏脂质异常蓄积和脂毒性,尤其是在心力衰竭的情况下。CD36 是心脏组织中脂肪酸摄取的关键介质。研究表明,CD36 基因缺失可预防肥胖和糖尿病小鼠模型中心脏肥大和功能障碍的发生。然而,CD36 敲低或敲除在压力超负荷条件下心脏功能障碍发生和进展中的确切作用仍不清楚。目的:本研究旨在探讨 CD36 部分敲低在预防压力超负荷心脏脂毒性和功能障碍方面的可行性。方法:分别通过基因缺失和 AAV-9 CD36 shRNA 注射,诱导心脏特异性 CD36 完全敲除 (CKO) 和部分敲低 (CKD) 小鼠。 CD36 CKO 和 CKD 小鼠均接受横主动脉缩窄术 (TAC) 诱导心脏压力超负荷。通过超声心动图测量心脏功能,并检测心脏脂质积聚、脂肪酸氧化和代谢状态。结果:TAC 手术诱导了严重的心脏功能障碍和病理性心脏重塑,并伴有心肌内脂质沉积异常和脂肪酸氧化能力受损。CD36 CKO 减轻了衰竭心脏的异常脂质积聚,同时加剧了 TAC 引起的心脏能量缺乏和氧化应激。相反,CD36 CKD 改善了 TAC 诱导的小鼠心脏脂质积聚和过度氧化应激,同时改善了线粒体呼吸功能。此外,CD36 CKD 诱导糖酵解通量显著增加,进入 TCA 循环,从而维持 ATP 生成。因此,CD36 CKD 阻止了压力超负荷引起的心脏肥大和功能障碍的发展。结论:本研究发现,CD36 CKD(而非 CD36 CKO)能够保护压力超负荷心脏免受心脏功能损害。调控 CD36 是一种可行的策略,可以达到维持心脏能量供应的最佳状态,同时避免脂肪毒性。
资金:这项研究得到了从Bill&Melinda Gates Foundation获得的资金(授予号Inv-002138)致F.O.O.,F.B.,H.M.F。 霍华德·休斯医学研究所基金会国际研究学者奖(授予号) OPP 1099295)至F.O.O.和医学科学学院Springboard奖(参考:SBF007 \ 100094)至F.B. 本出版物中的发现和结论是作者的发现和结论,不一定反映了HHMI,BMGF或AMS的立场或政策。 疟疾载体天文台得到多个机构和资助者的支持。 Wellcome的参与得到了Wellcome的资金(220540/Z/20/A,“ Wellcome Sanger Institute Quinquennial Review 2021-2026”)和Bill&Melinda Gates Foundation(Inv-001927)的支持。 利物浦热带医学学院的参与得到了美国国家过敏和传染病研究所([NIAID] R01-AI116811)的支持,并得到了医学研究委员会的额外支持(MR/P02520X/1)。 后者的赠款是英国资助的奖项,是欧盟支持的EDCTP2计划的一部分。 马丁·唐纳利(Martin Donnelly)得到皇家学会(RSWF \ ft \ 180003)的支持。 泛非蚊子控制协会的参与是由Bill and Melinda Gates Foundation(Inv-031595)资助的。Inv-002138)致F.O.O.,F.B.,H.M.F。霍华德·休斯医学研究所基金会国际研究学者奖(授予号OPP 1099295)至F.O.O.和医学科学学院Springboard奖(参考:SBF007 \ 100094)至F.B.本出版物中的发现和结论是作者的发现和结论,不一定反映了HHMI,BMGF或AMS的立场或政策。疟疾载体天文台得到多个机构和资助者的支持。Wellcome的参与得到了Wellcome的资金(220540/Z/20/A,“ Wellcome Sanger Institute Quinquennial Review 2021-2026”)和Bill&Melinda Gates Foundation(Inv-001927)的支持。利物浦热带医学学院的参与得到了美国国家过敏和传染病研究所([NIAID] R01-AI116811)的支持,并得到了医学研究委员会的额外支持(MR/P02520X/1)。后者的赠款是英国资助的奖项,是欧盟支持的EDCTP2计划的一部分。马丁·唐纳利(Martin Donnelly)得到皇家学会(RSWF \ ft \ 180003)的支持。泛非蚊子控制协会的参与是由Bill and Melinda Gates Foundation(Inv-031595)资助的。
免疫与生殖是雌性昆虫生存和种群维持的重要功能。然而由于资源有限,这两个功能无法同时满足,从而导致它们之间需要进行能量权衡。值得注意的是,这种免疫-生殖权衡的机制尚不清楚,而能量竞争可能在其中起着核心作用。本研究以飞蝗为研究对象,对参与脂质合成和昆虫能量代谢的关键基因脂肪酸合酶(FAS)进行了研究。利用细菌感染和RNA干扰(RNAi)技术研究了不同处理下蝗虫的免疫、繁殖力和能量代谢模式的变化。本研究结果表明,藤黄微球菌感染可触发蝗虫的免疫反应,显著上调防御素3(DEF3)和Attacin的表达,并增强酚氧化酶(PO)活性。当 FAS2 沉默后,细菌攻击在较小程度上上调了 DEF3 和 Attacin 的表达,导致溶菌酶活性增加而不是 PO。此外,细菌感染导致脂肪体中糖原和葡萄糖含量降低,同时三酰甘油(TAG)含量显著增加。然而,在 FAS2 敲低后,脂肪体中的脂质和碳水化合物含量均显著降低。与单独的细菌感染相比,低 FAS2 表达进一步加剧了蝗虫的繁殖力受损。卵黄蛋白 A ( VgA ) 和卵黄蛋白 B ( VgB ) 的表达水平显著降低,卵巢萎缩严重。值得注意的是,卵巢重量仅为对照组的 21%。此外,雌性表现出最少的产卵行为。总之,我们的研究结果表明,在 FAS2 基因沉默后,蝗虫更倾向于免疫刺激能量激活,而生殖投入减少。该研究成果将有助于进一步探索蝗虫免疫和生殖能量之间权衡的分子机制。
造血是由诱导造血干细胞及其后代分化和增殖的分子机制驱动的。这涉及各种转录因子的活性,例如分裂(HES)家族的毛/增强子的成员以及HES1和HES4的重要作用,已显示在正常和恶性造血中。在这里,我们使用体外和体内模型研究了HES6在人造血中的作用。使用大量和单细胞RNA序列数据,我们表明HES 6在红细胞/巨核细胞和浆细胞类动物树突状细胞的发育以及多能前体以及在T-B-cell发育的特定阶段中表达,分别在T-和B细胞发育的特定阶段中。一致地,在体外分化良好的体外分化测定中,在脐带血源性血液中的HES6敲低导致人类造血质体前体降低了对巨核细胞,红细胞,血浆乳清细胞,血浆乳清细胞,B细胞,B细胞和T细胞的分化。此外,HES6敲低造血茎和祖细胞在体外表现出降低的菌落形成单位容量,并且在竞争性移植测定中在体内重新构成造血的潜力受损。我们证明,HES6表达的丧失对红细胞分化过程中的细胞周期进程有影响,并为影响这些扰动的潜在下流靶基因提供了证据。因此,我们的研究为HES6在人类造血中的作用提供了新的见解。
参考文献:1 Masrori&van Damme,2020年; 2 Becker等人2017年。缩写:AAV:腺相关病毒; ALS:肌萎缩性侧索硬化;方差分析:方差分析; ATXN2:ataxin-2; BAC -ATXN2 -Q72小鼠:表达人ATXN2的转基因小鼠;续:控制向量; DPCR:数字聚合酶链反应; FTD:额颞痴呆; G:mirna指南候选人; ICV:脑室室内; mRNA:Messenger RNA; mirna:microRNA; PBS:磷酸盐缓冲盐水; QPCR:定量聚合酶链反应; SD:标准偏差; TDP-43:焦油DNA结合蛋白43; VG:矢量基因组; VMIX TM:miRNA沉默平台。致谢和披露:这项研究由Aviadobio Ltd. PMC,RJ,ZW,ED,NS,LR,CA,CA,AA,LI,CJM,JI和CES资助,是Aviadobio Ltd. OB和NAMN的雇员和股东。RJ,CS,DYL和YBL在与VMIX™平台有关的专利中命名。
目的:由于胶质母细胞瘤具有快速生长的特性,其诊断和治疗具有挑战性。确定该疾病的新特征对于改善患者护理非常重要。本研究探讨了细胞周期检查点激酶 Mps1 的过度表达与胶质母细胞瘤患者预后之间的关联。方法:我们分析了 U251 胶质母细胞瘤细胞中 Mps1 敲低后的在线转录组和蛋白质组数据。进行了基因本体富集分析以确定 Mps1 敲低后激活的关键通路。结果:分析显示,细胞周期转换和响应 DNA 损伤的内在凋亡通路是 Mps1 敲低后激活的主要通路。三种基因和蛋白质成为共同靶标:BCL2L1(编码蛋白质 Bcl-xL)下调,而 CDKN1A(编码 p21)和 SETD2(编码组蛋白甲基转移酶 SETD2)上调。结论:本研究首次报道了Mps1抑制与SETD2过表达之间的关联,为胶质母细胞瘤的治疗提供了新的视角。关键词:Mps1,胶质母细胞瘤,基因本体论,转录组学,蛋白质组学,SETD2
针对包括癌症在内的各种疾病的广义治疗策略是耗尽或灭活有害蛋白质靶标。各种形式的蛋白质或基因沉默分子,例如,小分子抑制剂,RNA干扰(RNAI)和microRNA(miRNA)已用于可药物测定靶标。在过去几年中,已开发出靶向蛋白质降解(TPD)方法来直接降解候选蛋白质。在TPD方法中,靶向嵌合体(Protac)的蛋白水解已成为通过泛素 - 蛋白酶体系统选择性消除蛋白质的最有希望的方法之一。protacs以外,具有潜在治疗用途的TPD方法包括内部介导的蛋白质敲低和三方基序21(TRIM-21)介导的Trim-Awa。在这篇综述中,总结了蛋白质敲低的方法,它们的作用方式以及它们比常规基因敲低方法的优势。在癌症中,与疾病相关的蛋白质功能通常通过特定的翻译后修饰(PTM)执行。 在靶蛋白的PTM形式的直接敲低中突出了修剪的作用。 此外,还讨论了各种疾病中TPD方法的应用挑战和前瞻性临床使用。在癌症中,与疾病相关的蛋白质功能通常通过特定的翻译后修饰(PTM)执行。在靶蛋白的PTM形式的直接敲低中突出了修剪的作用。此外,还讨论了各种疾病中TPD方法的应用挑战和前瞻性临床使用。
摘要:简介:Docosahexaenoic Acid(DHA)是n -3长链多不饱和脂肪酸,对于胎儿发育至关重要,胎盘通过胎盘从母亲传输到胎儿。含有2A(MFSD2A)的主要促进剂超级家族型溶血磷脂酰胆碱(LPC)转运蛋白位于人胎盘的合成型胞植物细胞的基础质膜中,人胎盘的胎盘膜细胞和MFSD2A表达与人类表达的人类表达与昏迷的corn lumbilical Corncly lppc-lpc-lpc-dha相关。我们假设孕妇小鼠中MFSD2A的胎盘特异性敲低会减少胎儿脑中的磷脂DHA的积累。方法:用表达EGFP的慢病毒(E3.5)的小鼠胚泡(E3.5),该慢病毒含有靶向MFSD2A或非编码序列(SCR)的shRNA,然后转移到假孕妇中。在E18.5时,称重胎儿,并收集其胎盘,大脑,肝脏和血浆。MFSD2A mRNA表达通过QPCR在大脑,肝脏和胎盘中测定,以及通过LC-MS/MS量化磷脂DHA。结果:与SCR对照相比,在E18.5(n = 45,p <0.008)时,靶向MFSD2A的shRNA在E18.5(n = 45,p <0.008)时将胎盘mRNA MFSD2A的表达降低了38%。MFSD2a在胎儿脑和肝脏中的表达不变。胎儿脑体重减少了13%(p = 0.006)。体重,胎盘和肝脏重量不受影响。胎儿脑磷脂酰胆碱和磷脂酰乙醇胺DHA含量较低,胎盘特异性MFSD2A敲低的胎儿含量较低。这些数据提供了机械证据,表明胎盘MFSD2A介导LPC-DHA的母体 - 饮食转移,这对于大脑生长至关重要。结论:LPC-DHA转运蛋白MFSD2A表达表达的胎盘特异性减少导致胎儿脑体重降低,胎儿大脑中磷脂DHA含量降低。
摘要:膀胱癌(BC)是一种异质性疾病,吡咯烷-5-羧酸还原酶1(PYCR1)能够促进BC细胞的增殖和侵袭,加速BC进展。本研究将si-PYCR1加载到BC的骨髓间充质干细胞(BMSC)来源的外泌体(Exos)中。首先,评估BC组织/细胞中的PYCR1水平,并评估细胞增殖、侵袭和迁移。测定有氧糖酵解水平(葡萄糖摄取、乳酸生成、ATP生成和相关酶的表达)和EGFR/PI3K/AKT通路磷酸化水平。通过共免疫沉淀实验检查PYCR1-EGFR相互作用。用oe-PYCR1转染的RT4细胞用EGFR抑制剂CL-387785处理。将si‑PYCR1装载于Exos中并进行鉴定,随后评估其对有氧糖酵解和恶性细胞行为的影响。通过给小鼠注射Exo‑si‑PYCR1和Exo‑si‑PYCR1建立异种移植瘤裸鼠模型。PYCR1在BC细胞中上调,在T24细胞中表达最高,在RT4细胞中表达最低。PYCR1敲低后,T24细胞的恶性行为和有氧糖酵解降低,而在RT4细胞中PYCR1过表达则扭转了这些趋势。PYCR1与EGFR相互作用,CL‑387785抑制EGFR/PI3K/AKT通路并减弱PYCR1过表达对RT4细胞的影响,但对PYCR1表达没有影响。 Exo‑si‑PYCR1对有氧糖酵解和T24细胞恶性行为的抑制作用比si‑PYCR1更强。Exo‑si‑PYCR1阻断了异种移植肿瘤的生长,具有良好的生物相容性。简而言之,
基因治疗的一个主要目标是用功能性基因替换有缺陷的基因。一个重大的障碍是,蛋白质的表达不足或过度表达可能像编码突变一样容易导致疾病。目前显然需要将经过实验验证的基因治疗策略转化为临床应用。为了解决这个问题,我们开发了一个模块化的单转基因表达系统,用于用生理表达的变体替换目标基因。为了实现这一点,我们首先设计了一系列 5'UTR“衰减器”序列,这些序列可以预测地减少配对基因的翻译。这些序列通过允许控制高表达、普遍存在的启动子的翻译,提供了广泛的通用用途。重要的是,我们证明这允许通过在单个转录本上将 microRNA 适应的 shRNA 与其各自的替代基因配对来实现全新的敲除和救援应用。这种矫正方法的一个值得注意的候选对象是退行性且致命的运动神经元疾病 ALS。很大一部分非特发性 ALS 病例是由 SOD1 基因的各种突变引起的,随着治疗 ALS 的临床试验的启动,重要的是要考虑到功能丧失机制对其病理的影响与任何其他因素一样大。作为治疗由异质突变引起的单基因疾病的通用方法,我们通过改变衰减剂的强度证明了对稳定细胞系中 SOD1 替换的完全和可预测的控制。