肥胖和CAD增加需要手术干预的肥胖患者的数量[6]。应进行良好的胸骨固定,以减少胸骨切开术的并发症,尤其是在病态肥胖的患者中。在胸骨闭合技术之间进行选择时,根据患者的特征进行正确的评估和手术经验起着非常重要的作用[7]。病态肥胖的患者在心脏手术期间接受胸腔手术中位切开术的患者可能高于正常并发症的风险[8]。刚性钛板固定是新的胸骨闭合方法之一[9]。刚性钛板固定系统由固定的横向或纵向钛板组成,该板固定在自动敲击单锁螺钉[10]。在检查文献时,可以看出,在接受严格的钛板固定的患者中,胸骨愈合和临床结果更好。但是,有限的研究评估了僵硬的钛板加固在病态肥胖患者方面的结果[4,11-13]。在这项研究中,其目的是介绍刚性钛板增强剂的临床结果,以及仅在病态肥胖的患者中进行胸骨固定的常规线方法,这些患者接受了胸骨中间的心脏直视手术,从而有助于文献以及用于固定术的固定方法的方法。
帕金森氏病:SSRIS/SNIS缩写:BDI:贝克抑郁量表; EPS:锥体外症状; fog-Q:步态问题的冻结; ftt:手指敲击测试; HADS:医院焦虑和抑郁量表; HAM-D分数:抑郁症的汉密尔顿评分量表; PPT:Purdue Pegboard测试; SIADH:综合征或不适当的抗利尿激素产生; SSRI:选择性5-羟色胺再摄取抑制剂; SNRI:5-羟色胺和去甲肾上腺素的再摄取抑制剂; UPDRS:统一的帕金森氏病评级量表;文学搜索日期:17-03-2022结论:请勿监视。基于副作用的严重程度和频率,决定不监视SSRIS和SNRI。casuistics描述了帕金森氏病的恶化和帕金森主义症状的发生。其他研究表明,添加SSRI或SNRI后,帕金森氏症的改善。为了对多巴胺能神经传递的轻度积极作用,可以在其他SSRI和Trazodon上选出SNRIS Duloxetine和Venlafaxine。抑郁症会对PD患者的生活质量产生重大影响。因此,必须单独称重抗抑郁药的副作用与生活质量的利润有关。表1中的其他评论概述了该报告所需的药物。在帕金森氏症人口和帕金森氏病中,该组中经常使用的药物是Cityopram和Venlafaxine(也是Mirtazapine和Nortriptyline。 div>在其他报告中描述了这些。表1。[1]div div dapoxetine在本报告中包括了类似的作用机理,但用于抑郁以外的其他适应症。ssris和Snris在荷兰市场上。
什么是功能性MRI(fMRI)?MRI代表磁共振成像。MRI机器使用大型磁铁拍摄孩子身体内部的照片。MRI不使用辐射。功能性MRI是一项在特定活动中为大脑拍照的考试。这些活动范围从物理运动(例如手指敲击或攻击)到语言任务。为什么要进行考试?进行此考试以查看大脑中某些关键功能发生的位置。期望什么,因为MRI使用强大的磁铁来创建图像,我们必须遵循严格的安全过程。为了确保您的孩子安全,我们将要求您回答安全问题列表,并使用手持金属探测器。如果您的孩子不需要药物入睡参加考试,则一位父母或监护人可能与您的孩子一起在MRI套件中。您将被要求完成与孩子相同的筛查过程。制定其他兄弟姐妹可能会有所帮助。出于安全原因,如果您怀孕,您将不允许陪伴您的孩子。准备孩子是这项研究成功的关键。为了帮助您的孩子做好准备,我们的孩子生活专家将帮助您缓解您的孩子的恐惧和焦虑。请让工作人员知道您是否对儿童生活咨询感兴趣,无需额外费用。MRI考试的成功取决于孩子躺在MRI隧道内的能力。机器在拍照时会发出不同类型的噪音。此页面上找到的MRI准备视频可能有助于为您的孩子准备:https://www.texaschildrens.org/departments/mri-metage-maket-resnance-imigance-imaging
脑衍生的神经营养因子(BDNF)促进了发育过程中神经元的生存和生长。在成人神经系统中,BDNF对于多种生物学过程(例如记忆形成和食物摄入)中的突触功能很重要。此外,BDNF还与心血管系统的开发和维护有关。BDNF基因包括几个替代的未翻译5 0外显子和两个3 0 UTR的变体。尚未建立这些整个替代品对转换性的影响。使用报告基因并翻译核糖体的纯粹纯度分析,我们显示了普遍存在的BDNF 5 0 UTR,但不是3 0 UTR,对翻译产生抑制作用。但是,与以前的报告相反,我们没有检测到神经元活动对BDNF翻译的显着影响。通过敲击牛3 0 UTR的敲门式分析,牛生长激素3 0 UTR表明,BDNF 3 0 UTR是有效的BDNF mRNA和BDNF mRNA和BDNF蛋白在大脑中产生的,但在肺和心脏中的抑制作用。最后,我们表明bdnf mRNA富含大鼠脑突触剂体,其中含有转录本的外显子I检测到较高的富集。总而言之,这些结果在理解BDNF UTR的功能方面发现了两个新方面。首先,长BDNF 3 0 UTR不会抑制大脑中的BDNF表达。第二,外显子I - 衍生5 0 UTR在BDNF mRNA的亚细胞靶向中具有明显的作用。
摘要脆弱的X综合征(FXS)代表了遗传性智力残疾的最普遍形式,是自闭症谱系障碍的第一个单根原因。fxs是由于不存在RNA结合蛋白FMRP(脆弱的X信使核糖核蛋白)而引起的。神经元迁移是大脑发育的重要步骤,允许神经元从其生发壁nir将其移动到最终整合位点。FMRP在神经元迁移中的确切作用在很大程度上尚未开发。使用FMR1 -NULL小鼠中产后鼻迁移(RMS)神经元的实时成像,我们观察到,FMRP的缺失会导致神经元迁移延迟和轨迹改变,与中心体运动的缺陷有关。RNA干扰诱导的FMR1的敲低表明这些迁移缺陷是细胞自主的。值得注意的是,与这些迁移缺陷有关的主要FMRP mRNA靶标是微管相关蛋白1b(MAP1B)。击倒MAP1B表达有效地拯救了大多数观察到的迁移缺陷。最后,我们通过证明没有FMRP的缺乏在迁移神经元核的微管的笼子中诱导缺陷来阐明发挥作用时的分子机制,而迁移神经元核的细胞核的缺陷,这是由MAP1B敲击救出的。我们的发现揭示了FMRP与MAP1B合作的新型神经发育作用,通过影响微管细胞骨架来共同策划神经元迁移。
摘要背景:为了将经颅电刺激 (tES) 应用于运动皮层,通常使用经颅磁刺激 (TMS) 的运动诱发电位来识别运动热点。本研究的目的是验证一种基于脑电图 (EEG) 的新型运动热点识别方法的可行性,该方法使用机器学习技术作为 TMS 的潜在替代方案。方法:在 30 名受试者执行简单的手指敲击任务时,使用 63 个通道测量 EEG 数据。从六个频带(delta、theta、alpha、beta、gamma 和 full)提取 EEG 数据的功率谱密度,并独立用于训练和测试用于运动热点识别的人工神经网络。将 TMS 识别的各个运动热点的 3D 坐标信息与我们基于 EEG 的运动热点识别方法估计的坐标信息进行定量比较,以评估其可行性。结果:TMS 识别的运动热点位置与我们提出的运动热点识别方法之间的最小平均误差距离为 0.22 ± 0.03 厘米,证明了我们提出的基于 EEG 的方法的概念验证。当仅使用连接到运动皮层中部的 9 个通道时,测量的平均误差距离为 1.32 ± 0.15 厘米,表明实际使用基于相对较少的 EEG 通道的所提出的运动热点识别方法的可能性。结论:我们证明了我们新颖的基于 EEG 的运动热点识别方法的可行性。预计我们的方法可以作为 TMS 的运动热点识别的替代方案。特别是,当使用最近开发的与 EEG 设备集成的便携式 tES 设备时,它的可用性将显著提高。关键词:运动热点、脑电图、经颅电刺激、机器学习、人工神经网络
6。分子生物学2学生对课程的描述必须了解剪接RNA的碱基,mRNA向蛋白质的翻译,遗传密码,原核生物和真核生物中的转录调节以及调节性RNA的多样性和功能。 div>教师或助手将在课程的主题,科学文章的讨论以及对主题的评论,评估活动(例如Kahout和类似的评估活动)上进行演讲。 div>该课程的另一个轴由学生的分子生物学方法的介绍组成。 div>每个学生在20到30分钟内提出了一种方法。 div>这旨在为学生提供基础,以了解分子生物学和基因组科学中最常见方法的概念和范围。 div>During previous courses the following methods were presented: electrophoresis & nucleic acid extraction, nucleic acid hybridization (retention supports, southern and northern type hybridations), DNA amplification (PCR, RT-PCR, real-time PCR), DNA sequencing (chemistry and enzymatic), recombinant DNA techniques (restriction, restriction, restriction, restriction Ligation, directed mutagenesis), new cloning systems (gateway, mole, ...), protein analysis (SDS-Page, Western blot), protein analysis II (Elisa, immunoprecipitation), immunohistochemistry, eukaryotic expression systems (transfection methods, stable transfections, transitional transfections), protein interactions- DNA (EMSA, Footprinting, CrossLinking), generation of genetic models (敲击,敲门,CRISPR/CAS9),干扰RNA,蛋白质 - 蛋白质相互作用系统(双杂种,一种杂种,蛋白质片段互补的测试),
慢性阿片类药物暴露会诱导阿片类药物的疼痛影响的耐受性,但对其他作用的敏感性。虽然这些适应的发生率充分,但潜在的细胞机制尚不清楚。这项研究旨在确定吗啡(一种原型的阿片类药物激动剂)慢性治疗如何在不同的亚细胞环境中诱导对随后的吗啡信号的适应。阿片类药物急性抑制从内侧丘脑(MTHAL)输入到背孔纹状体(DMS)的谷氨酸能传播,这是通过μ-阿片受体(MORS)的活性的。MOR存在于在DMS中终止的跨膜神经元的体突触前室中。我们研究了慢性吗啡治疗对雄性和雌性小鼠在MTHAL - DMS突触中随后的吗啡信号传导的影响。出乎意料的是,慢性吗啡治疗增加了男性但雌性小鼠的MTHAL - DMS突触传播(吗啡促进)的亚分类抑制。在颗粒细胞体中,慢性吗啡治疗降低了雄性和雌性小鼠的随后的吗啡激活(吗啡耐受)。在表达磷酸化降低的摩尔菌的敲击小鼠中,慢性吗啡治疗可耐受地耐受地(而不是促进)随后在mthal-dms末端发出的吗啡信号传导,表明磷酸化能力性能力性的适应性在前式终止的适应性,以应对耐置换状态。这项研究的结果表明,慢性吗啡暴露的影响并非普遍存在。相反,MOR功能的适应性可以取决于多种因素,例如亚细胞受体分布,局部电路的影响和性别。
摘要 心流被定义为一种认知状态,与自动和毫不费力的控制感有关,能够在极具挑战性的情况下达到最佳表现。在体育运动中,心流可以通过正念训练得到增强,而正念训练与额叶 θ 活动(4-8 Hz)有关。此外,研究表明,额叶-中线 θ 振荡可促进多种认知任务中的控制过程。先前的 θ 神经反馈训练研究表明,一次训练足以提高运动表现,本研究基于此调查了一次 30 分钟的额叶-中线 θ 神经反馈训练是否 (1) 在手指敲击任务中除了运动表现外还能增强心流体验,以及 (2) 是否转移到 n-back 任务中的认知控制过程。在神经反馈训练期间能够成功上调 θ 活动的参与者(反应者)在训练后表现出比未增强 θ 活动的参与者(无反应者)更好的运动表现和心流体验。在所有参与者中,训练期间 θ 活动的增加与从训练前到训练后的运动表现增强有关,而与训练前的表现无关。有趣的是,θ 训练收益也与流动体验的增加有关,即使控制了相应的运动表现增加也是如此。n-back 任务的结果并不显著。尽管这些发现主要是相关的,需要研究其他促进流动的影响,但目前的发现表明,额叶-中线 θ 神经反馈训练是一种有前途的工具,可以支持流动体验,并对提高表现有额外的相关性。
4月份的MTA/BMA(M/F/D)科学技术助理作为完整的时间职位。该职位最初限于3个月;计划了长期的观点。您的责任领域是该研究所神经遗传学研究小组(Praschberger博士)研究项目的科学技术支持。成功的候选人可以期待各种责任领域,高水平的参与室以及学习令人兴奋和创新的方法的机会。特别是,重点是新果蝇模型的生产和表型,以及基于人类干细胞的神经遗传疾病的神经元细胞模型(尤其是模型中的转基因和CRISPR敲击,但也是RNAi和敲除模型) - 这是通过在工作过程中的密切合作来学到的。如果您有任何疑问,请联系:roman.praschberger@i- med.ac.at.。先决条件是一项完整的培训,是MTA文凭,科学学士学位,硕士,M.Sc。的生物医学分析师。或类似成功的候选人还具有在实验室工作,团队合作以及独立参与和对科学问题的兴趣中的高度准确性和责任感的特征。需要经典湿法实验室方法,例如PCR,质粒矢量的克隆,蛋白质印迹以及对基于计算机的分析方法的高水平和开放性的知识。特殊方法,例如共聚焦显微镜。此用途的每月最低工资目前为3,071.30欧元(每年14倍),并且可以通过对活动特定的 - 特定前经验和其他与工作场所特殊特征相关的活动的质疑和其他赔偿组成部分来增加集体协议法规。如果您有兴趣,请发送您的申请文件,说明参考“ TA-2025-神经遗传学”:Dr.Med教授。J. Zschocke,博士,人类埃斯塔斯研究所 1/1楼,6020 Innsbruck或通过电子邮件至:humgen@i-med.ac.atJ. Zschocke,博士,人类埃斯塔斯研究所1/1楼,6020 Innsbruck或通过电子邮件至:humgen@i-med.ac.at