(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2021 年 11 月 23 日发布。;https://doi.org/10.1101/2021.11.15.468743 doi:bioRxiv preprint
霜霉病抗性 6 (DMR6) 蛋白是一种 2-氧戊二酸 (2OG) 和 Fe(II) 依赖性加氧酶,参与水杨酸 (SA) 代谢。SA 被认为是一种非生物胁迫耐受性增强剂,在番茄中发现 DMR6 的失活会增加其水平并诱导对多种病原体的抗病性。通过应用 CRISPR/Cas9 技术,我们生成了 Sldmr6-1 番茄突变体并测试了它们对干旱和晚疫病的耐受性。野生型番茄品种‘San Marzano’及其 Sldmr6-1 突变体被剥夺了 7 天的水。WT植物表现出严重的枯萎,而T 2 Sldmr6-1突变体叶片肿胀,并保持较高的土壤相对含水量。生态生理测量表明,Sldmr6-1突变体采取了节水行为,通过降低气孔导度来降低蒸腾速率。在干旱胁迫下,同化率也降低,导致气孔下腔中的CO 2浓度没有改变,并提高了水分利用效率。此外,在Sldmr6-1突变体中,干旱胁迫诱导抗氧化相关基因SlAPX和SlGST的上调以及参与ABA分解代谢的SlCYP707A2基因的下调。最后,我们首次在番茄中强调,Sldmr6-1 突变体对晚疫病的病原菌致病菌的敏感性降低。
自闭症谱系障碍 (ASD) 是一种异质性神经发育障碍,表现为社交互动障碍、沟通障碍以及限制性和重复性行为。ASD 具有很强的遗传基础,迄今为止已发现了许多与 ASD 相关的基因。我们之前的研究表明,X 连锁基因 NEXMIF/KIDLIA 表达的缺失与具有自闭症特征和智力障碍 (ID) 的患者有关。为了进一步确定基因在疾病中的因果作用,并了解病理学背后的细胞和分子机制,我们生成了 NEXMIF 敲除 (KO) 小鼠。我们发现雄性 NEXMIF KO 小鼠表现出社交能力和沟通能力下降、重复梳理行为增多以及学习和记忆能力下降。NEXMIF/KIDLIA 表达的缺失导致突触密度和突触蛋白表达显著降低。通过测量海马中的兴奋性微征和突触后电流,雄性 KO 动物始终表现出异常的突触功能。这些发现表明,NEXMIFKO 小鼠重现了人类疾病的表型。NEXMIFKO 小鼠模型将成为研究 ASD 所涉及的复杂机制和开发这种疾病的新型疗法的宝贵工具。
连接的PS1突变总是会导致促进神经系统疾病的研究中心增加,特别是淀粉样蛋白生成物种A 42 Brigham and妇女医院(Duff等,1996; Jarrett等,1993; Scheuner et al。据推测,PS1本身可能具有哈佛医学院 - 分泌酶活性(Wolfe等,1999),这是马萨诸塞州波士顿02115的概念,由PS1直接结合,由pseptidomomi -3 Mind/Brain Mind/Brain Institute Metic Institute Metic -Scretase -Secretase -Secretase -Secretase -Secretase -Secretase -Secretase -Secretase -Secretase -Secretase -Secretors抑制器(Esler等人)(Esler et al li al li an li an li and li。这些发现提出了马里兰州21218 PS1的可能性,可能代表了抗敏感的脑和认知科学系的有吸引力的目标。学习和记忆中心PS1作为马萨诸塞州AD的治疗目标的可行性非常取决于降低PS1功能剑桥,马萨诸塞州02138在成人大脑中的影响。由于PS1 / 5梅奥诊所杰克逊维尔小鼠的围产期致死性,但先前关于佛罗里达州杰克逊维尔的应用程序处理的研究32224 32224 PS1的缺乏依赖于培养的神经元6 Howard Hughes Medical Institute衍生自胚胎PS1 /大脑。除了神经生物学中心和行为中心在应用程序处理中的作用外,我们先前对哥伦比亚大学PS1 /小鼠的研究表明,PS1在大脑发育过程中发挥了纽约10032的多效性效应,包括调节神经发生和缺口信号(Handler et al。,2000; Shen等,1997)。此外,Notch信号被限制在产后前脑。在没有PS1的情况下,神经前代汇总细胞过早地分化为有丝分裂后的神经元,导致祖细胞的早期消耗,我们开发了有条件的presenilin-1(ps1),随后是一个较小的神经元种群(han-oketut小鼠(CKO),在PS1 IS INARTACTIVINID中,Dive and。如小鼠所示,在PS1 /胚胎脑中诱导的PS1 CKO是可行的,并且没有明显的异常。降低了HES5表达并增加了DLL1表达的淀粉样蛋白pre-的羧基末端片段(Handler等,2000)。PS1似乎通过调节CKO小鼠的细胞内皮层的产生,而Notch1的-Amyloid结构域(De Strooper等,1999; Song peptides降低了。Notch Downstream等,1999)的表达在下游效应基因的晚期转录中不受影响,该基因不受影响,该基因不受影响。CKO皮层。尽管基础突触传播,但由于PS1 /小鼠的围产期致死性,PS1在成年大脑中的作用仍然未知长期增强和长期抑郁。re-hippocampal区域Ca1突触正常,PS1恰当地,秀丽隐杆线虫中PS1同源物中的突变,CKO小鼠在长SEL-12和HOP-1中表现出细微但显着的缺陷,导致缺陷导致缺陷术语空间记忆。缺陷而不会影响Notch向下的表达,以研究PS1失活对App Stream基因的影响。这些结果表明,在成年大脑皮层中PS1功能失活的神经形态中,两个胆碱能中间神经元,表明参与导致PS1在神经元功能中的一代和微妙的认知降低(Wittenburg等,2000)。处理,Notch信号通路以及成人大脑中的突触和认知功能,我们采用了CRE/LOXP重组系统来开发PS1条件敲除(CKO)小鼠。使用这种策略,Presenilin-1(PS1)的突变是最常见的PS1表达,在早期发作家族性阿尔茨海默氏病(FAD)的皮质原因中逐渐消除。从第三周开始的CKO小鼠开始。在-Amloid(A)肽的累积和沉积中,CKO小鼠的成年大脑皮层,大脑皮层中40的水平是早期和中心过程,而AD病原体的水平差异降低。A肽是生成App c末端片段(CTF)与淀粉样蛋白前体蛋白(APP)不同的,这是由于皱纹而导致的。令人惊讶的是,在CKO小鼠的皮质中未填充了凹槽下顺序的蛋白水解裂解的表达。Hippocampal 7信函中的基础突触传播和突触可塑性:jshen@rics.bwh.harvard.edu
摘要:类胡萝卜素是一种有价值的色素,天然存在于所有光合植物和微藻以及某些真菌、细菌和古细菌中。绿色微藻形成了复杂的类胡萝卜素结构,适合高效采光和防光,并通过内源性 2-C-甲基-D-赤藓糖醇 4-磷酸 (MEP) 途径的强大功能具有强大的类胡萝卜素生产能力。先前的研究建立了成功的基因组编辑,并诱导了莱茵衣藻细胞类胡萝卜素含量的显著变化。本研究采用定制的类胡萝卜素途径来工程化生物生产有价值的酮类胡萝卜素虾青素。番茄红素 ε-环化酶 (LCYE) 的功能性敲除和基于非同源末端连接 (NHEJ) 的供体 DNA 在靶位点的整合会抑制 α-胡萝卜素的积累,从而抑制莱茵衣藻中丰富的类胡萝卜素叶黄素和氯黄素的积累,而不会改变细胞适应性。基于 PCR 的筛选表明,96 个再生候选系中有 4 个携带供体 DNA 的 (部分) 整合,并且 β-胡萝卜素以及衍生类胡萝卜素含量增加。与亲本菌株 UVM4 相比,Cr BKT、Pa crtB 和 Cr CHYB 的迭代过表达导致突变体 ∆ LCYE#3 (1.8 mg/L) 中的虾青素积累增加了 2.3 倍,这表明基因组编辑在设计用于虾青素生物生产的绿色细胞工厂方面具有潜力。
基因工程将细胞置于选择压力之下,需要几轮细胞倍增才能获得编辑后的克隆。因此,为避免基因组不稳定性积累,我们建议使用解冻后 2-3 次传代的细胞,尽可能接近质量测试过的细胞库。我们还建议在缺氧条件下(37 C/5% CO 2 /5% O 2 )维护 hiPSC 并进行基因编辑实验,因为在缺氧条件下培养 hiPSC 有几个优点,包括增强多能性、增加增殖、减少氧化应激、提高重编程效率、更好的分化潜力和低遗传不稳定性频率。2、3 这些好处可以提高 hiPSC 的质量和功能,这对于再生医学和疾病建模中的下游应用至关重要。Vallone 等人描述了描述板涂层、细胞维护以及酶促和非酶促解离的一般方案。4
本新闻稿包含《1995 年私人证券诉讼改革法》所定义的 Intellia Therapeutics, Inc.(“Intellia”或“公司”)的“前瞻性陈述”。这些前瞻性陈述包括但不限于关于 Intellia 以下信念和期望的明示或暗示的陈述:计划于 2020 年中期提交 NTLA-2001 的试验性新药(“IND”)申请或类似的临床试验申请,用于治疗转甲状腺素蛋白淀粉样变性(“ATTR”),并计划于 2020 年下半年对首批患者进行给药;计划于 2021 年上半年提交 NTLA-5001 的 IND 申请,这是其首个 T 细胞受体(“TCR”)导向的工程细胞疗法开发候选药物,用于其急性髓细胞白血病(“AML”)项目;计划在 2021 年下半年为其遗传性血管性水肿(“HAE”)项目提交 IND 或类似的临床试验申请;计划推进和完成临床前研究,包括其 ATTR 项目和 HAE 项目的非人类灵长类动物研究,以及支持其他体内和离体项目的其他动物研究;开发专有的 LNP/AAV 混合递送系统及其模块化平台,以推进其复杂的基因组编辑能力,例如基因插入;在即将召开的科学会议上展示更多数据以及 2020 年的其他临床前数据;改进和扩展其 CRISPR/Cas9 技术以开发人类治疗产品,以及维护和扩展其相关知识产权组合的能力;展示其平台的模块化并复制或应用临床前研究(包括其 ATTR、AML 和 HAE 项目)中取得的成果的能力,包括在任何未来研究(包括人体临床试验)中;使用 CRISPR/Cas9 技术开发其他所有类型的体内或体外细胞疗法的能力,尤其是针对 AML 中的 WT1 的疗法;优化其合作对其开发计划的影响的能力,包括但不限于与 Novartis 或 Regeneron Pharmaceuticals, Inc. 的合作,以及 Regeneron 为 HAE 计划达成共同开发和共同推广协议的能力;关于其开发计划的监管备案时间的声明。
2017 届博士生委员会:Pavan R Reddy 教授,主席 David Ginsburg 教授 Nicholas W Lukacs 教授 Malini Raghavan 教授 Michele S Swanson 教授
1. 安徽农业大学生命科学学院,合肥 230036,中国 2. 安徽农业大学前沿科学研究院生物育种技术研究中心,合肥 230036,中国 3. 百瑞生物技术有限公司,济南 250000,中国 4. 中国农业科学院作物科学研究所/国家南方研究院,农业农村部基因编辑技术重点实验室(海南),三亚 572025,中国 5. 南方科技大学,深圳 518055,中国 6. 海南省崖州湾种子实验室,三亚 572024,中国 † 这些作者对这项工作做出了同等贡献。 * 通信:朱建康(zhujk@sustech.edu.cn);朱建华(zhujh@ahau.edu.cn,朱博士全权负责与本文相关的所有材料的分发)
此预印本版的版权持有人于2023年8月31日发布。 https://doi.org/10.1101/2023.08.30.554628 doi:Biorxiv Preprint