“ painern反映了以下理解:whakawhanaungatanga是与自己和他人建立和维持关系的过程,是幸福的基础。Whakawhanaungatanga通过Whakapapa和Wherua代表,以及Tamariki,Whānau和Kaiako之间在Hapori(社区),Hapū),Hapū和Iwi之间的互连。幸福感受到Te Taiao的影响并促进了我们所生活的世界的社会,情感,政治,代际和历史方面。te Tiriti o Waitangi和Wairuatanga在整个模型中运行,代表其中心。该模型反映了在教育环境中促进和维持te tiriti o的深度,复杂性,知识和理解所需的,并在教育环境中促进了所有民族。” (同上。p.9)
摘要 本研究探讨了波特五力模型、资源基础观 (RBV) 和动态能力框架的整合,作为在当今复杂的商业环境中建立和保持竞争优势的综合方法。本文介绍了亚马逊和特斯拉等现实世界的例子,以展示实施这些综合战略的实际应用和潜在挑战。这些案例研究说明了成功的公司如何利用对其竞争格局、内部优势和资源能力的多方面理解来超越竞争对手并适应不断变化的市场条件。通过综合这三个框架,组织可以对其战略地位形成更细致入微和更全面的看法。波特五力模型提供了对行业结构和竞争动态的洞察,而资源基础观则侧重于识别和利用独特的内部资源。动态能力视角增加了一个关键的时间维度,强调了根据环境变化调整和重新配置资源的重要性。这种综合方法使公司能够随着时间的推移建立和维持其竞争优势,从而实现长期的组织成功。本研究进一步探讨了这一综合框架对于克服组织内部战略变革阻力的影响。通过全面了解影响竞争力的内外部因素,这种方法可以促进更有效的战略决策和实施,最终有助于组织在动态业务中取得长期成功。
1.1.识别和定义特定的保证级别 ...................................................................................................... 2 1.2.建立具体标准 ................................................................................................................................ 3 1.3.识别一组已知的相关威胁 ...................................................................................................... 5 1.4.确定每个威胁与哪个保证级别相关 ............................................................................. 5 1.5.识别针对威胁的常见缓解措施 ............................................................................................. 6 1.6.与供应商和利益相关者合作 ................................................................................................................ 7 2.检测和缓解威胁 ................................................................................................................ 8 3.了解并应对攻击 ............................................................................................................. 9 4.使用保证流程 ...................................................................................................................... 9 5.结论 ...................................................................................................................................... 10 附录 A:标准化术语 ............................................................................................................. 11 附录 B:LoA1 缓解概述 ............................................................................................................. 14
历史上,“整体柱时代”始于 20 世纪 90 年代 [ 1 ],当时开发了基于聚(甲基丙烯酸缩水甘油酯-共-乙烯二甲基丙烯酸酯)(聚(GMA-co-EDMA)[ 2 ] 和聚丙烯酰胺凝胶 [ 3 ] 整体柱作为蛋白质 HPLC 固定相。这些早期的努力启发了世界各地大量科学家进行创新研究,从而迅速推动了该领域的发展 [ 4 ]。今天,整体柱相由合成(聚甲基丙烯酸酯、聚丙烯酰胺和聚苯乙烯)[ 5-7 ]和天然(琼脂糖和纤维素)聚合物[ 8,9 ]或无机物质[ 10 ]获得。除此之外,在过去的十年中,有机-无机杂化整体柱也得到了广泛的发展[ 11,12 ]。在所有类型的整体柱中,刚性大孔聚合物整体柱是最大的类别之一,代表了不可膨胀的高度交联连续材料,含有互连大孔(d > 50 nm)[13-15]。20 世纪 90 年代末,使用刚性聚合物整体柱进行色谱分离的令人鼓舞的结果激发了整个行业的发展。20 多年来,BIA Separations(斯洛文尼亚卢布尔雅那)已将各种体积的刚性聚甲基丙烯酸酯和聚苯乙烯整体固定相制造为 CIM 盘、柱和管。从 2021 年开始,BIA Separations 成为 Sartorius(德国哥廷根)的一个部门。与基于颗粒的吸附剂中的扩散控制传质相比,由于大孔结构在流速增加的情况下具有高渗透性,整体柱可以实现对流控制的界面传质。高度交联的聚合物整体柱的机械和化学稳定性以及其易于制备是此类材料的其他积极特征 [16]。刚性聚合物整体柱可以在色谱柱或毛细管中原位合成,方法是在致孔溶剂存在下,通过热或光诱导聚合功能单体和交联单体 [ 17 , 18 ]。然后通过洗涤去除致孔剂,在聚合物结构中留下空隙,这些空隙是大孔。人们对聚合物整体柱产生兴趣的原因是它们在各种类型的分离和分析过程中可有效作为固定相,概述如下
部门耦合 (SC) 描述了能源部门有目的的连接和相互作用的概念,以增加供应、需求和储存的灵活性。虽然 SC 与智能能源系统研究相关,并属于 100% 可再生能源系统的研究流,但它目前专注于应对可再生能源间歇性馈入引起的时间能量平衡挑战。至于电网耦合,SC 目前仍属于传统能源电网。它没有充分利用耦合部门的潜力,因此缺乏整体视角。为了包含这种观点,我们呼吁使用耦合部门的所有电网进行空间能源运输,从而形成一个基础设施系统。通过使用耦合电网的不同损耗结构,我们说明了 SC 的整体观点如何最大限度地减少运输损耗。我们认为 SC 应该包括所有运输任何类型能源的电网(例如,甚至是交通或通信电网)。最后,我们得出并讨论了与政策制定者和研究相关的影响:我们说明了为什么监管和市场设计应该协调一致,以便不同部门内部和跨部门的激励措施支持气候变化目标。
我们认为健康行动计划不应只在某人身体不适或曾经身体不适时使用。任何人都可以从中受益。我的整个自我:我的健康工作计划可以成为入职和持续管理流程的重要组成部分。它可以帮助我们了解自己的工作偏好,识别压力触发因素和反应。如果使用得当,这些计划可以促进关于健康和绩效以及个人和组织蓬勃发展所需的开放对话。
这项维特罗研究的目的是比较单片氧化锆和多层氧化锆的骨折韧性,这是义齿修复体中的两种常用材料。断裂韧性是一个关键的机械性能,它决定了材料在压力下对裂纹传播的抗性,这对于牙齿修复的寿命和性能至关重要。使用计算机辅助设计和计算机辅助制造(CAD/CAM)技术制造了共有20张锆石(10个单片和10个多层)。使用Vickers Micro-Hardness测试仪使用压痕法测量椎间盘进行负载和断裂韧性。整体锆石的断裂韧性值(第1组)明显高于多层锆石(第2组)的断裂韧性值,平均值为5.394±0.378 MPa·M 1/2和4.358±0.394 MPa·M Pa·M 1/2(p <0.0001)。这些发现表明,整体氧化锆提供了出色的机械性能,使其成为更合适的高应力应用材料,而多层氧化锆则是前恢复的多层氧化锆,在前修复学位优先级。这项研究强调了在选择用于牙科修复体的氧化锆材料中的机械强度和美学吸引力之间的权衡,并为优化临床假体的材料选择提供了宝贵的见解。引言固定义齿牙齿领域的高级材料的开发显着影响了牙科修复体的寿命和性能。两种材料均根据其在固定假牙和氧化锆,特别是由于其出色的机械性能,包括高强度和断裂韧性,成为一种流行材料,使其成为牙冠和桥梁的理想选择[1]。单片氧化锆是用单个材料制成的,具有优异的强度和最小的分层风险[2]。然而,最近的进步引入了多层氧化锆,它结合了不同的层与不同的特性,以改善美观的同时试图维持结构完整性[3]。断裂韧性是评估牙科材料性能的关键参数,因为它决定了材料在压力下抵抗裂纹传播的能力[4]。氧化锆修复体的断裂性可能会受到几个因素的影响,包括材料的组成,层数,制造过程以及在功能过程中假体受到机械力的条件[5]。整体锆石虽然以其强度而闻名,但可能缺乏天然牙齿的美学特性,导致了多层氧化锆系统的引入[6]。这些多层系统结合了更透明的表面层,试图平衡强度和美学吸引力[7]。本文旨在评估和比较肢体修复应用中整体和多层锆的断裂韧性。通过研究这两种不同的氧化锆结构的机械性能,该研究旨在考虑功能性和美学需求,以洞悉牙科修复体的最佳材料选择。这些发现将有助于更好地理解这些材料在临床环境中的优势和局限性,最终指导未来的假体牙科进步。材料和方法材料在本研究中使用了两种类型的氧化锆材料:单片氧化锆和多层氧化锆。
1.1. 确定并定义具体的保障级别 ...................................................................................................................... 2 1.2. 制定具体标准 ...................................................................................................................................... 3 1.3. 确定一组已知的相关威胁 ................................................................................................................ 5 1.4. 确定每种威胁与哪种保障级别相关 ...................................................................................................... 5 1.5. 确定针对威胁的常见缓解措施 ............................................................................................................. 6 1.6. 与供应商和利益相关者合作 ...................................................................................................................... 7 2. 检测并缓解威胁 ............................................................................................................................. 8 3. 了解并应对攻击 ............................................................................................................................. 9 4. 使用保障流程 ............................................................................................................................. 9 5. 结论 ............................................................................................................................................. 10 附录 A:标准化术语 ............................................................................................................................. 11 附录 B:LoA1 缓解概述 ................................................................................................................ 14
摘要:高通量遗传筛选有助于发现触发特定细胞功能和/或表型的关键基因或基因序列。功能丧失性遗传筛选主要通过RNA干扰(RNAi)、CRISPR敲除(CRISPRko)和CRISPR干扰(CRISPRi)技术实现。功能获得性遗传筛选主要依赖于cDNA文库的过表达和CRISPR激活(CRISPRa)。碱基编辑可以进行功能获得性和功能丧失性遗传筛选。本综述讨论了基于Cas9核酸酶的遗传筛选技术,包括Cas9介导的基因组敲除和基于dCas9的基因激活和干扰。我们将这些方法与以前基于RNAi和cDNA文库过表达的遗传筛选技术进行了比较,并提出了CRISPR筛选的未来前景和应用。