摘要:癌症是一种致命的遗传性疾病,具有多种复杂性,包括癌症免疫逃避、治疗耐药性和复发,需要优化治疗才能正确治愈。分子研究表明,肿瘤本质上极其异质,导致癌症进展的复杂性,而癌症进展最终与其遗传机制有关。值得注意的是,患有相同类型癌症的患者对癌症治疗的反应不同,这表明需要针对每个患者制定特定的治疗方案。因此,需要对患者的肿瘤进行深入的基因组研究,以充分了解癌症发生和进展的决定因素,从而进行有效的靶向治疗。精准肿瘤学已经发展成为一种癌症治疗形式,专注于肿瘤的基因分析,以确定与癌症表现有关的分子改变,从而为疾病提供个性化的治疗。近年来,抗癌药物的配方和批量生产大量涌现,这主要是由于基因组技术的进步,使得能够精确靶向与疾病有关的致癌途径。本文旨在简要解释精准肿瘤学的基础和前沿,并结合该过程中所使用的工具和技术的进步,以评估其范围和对实现预期目标的重要性。
https://doi.org/10.5194/essd-2024-171预印本。讨论开始:2024年8月12日C⃝作者2024。cc by 4.0许可证。
*通讯作者:Muyi Yang,固态物理研究所,弗里德里希·席勒大学Jena,Max-Wien-Platz 1,07743 Jena,德国;弗里德里希·席勒(Friedrich Schiller)大学Jenafriedrich Schiller大学耶拿(Jena),Albert-Einstein-STR的ABBE光子学中心应用物理学研究所。15,07745德国耶拿;和Max Planck Photonics,Hans-Knöll-Straße1,07745德国Jena,电子邮件:muyi.yang@uni-jena.de。https://orcid.org/0000-0002-1738-4536 Maximilian A. Weissflog,应用物理研究所,Abbe Photonics,Friedrich Schiller University,Albert-Einstein-STR。15,07745德国耶拿;以及汉斯·斯特拉斯(Hans-Knöll-Straße)1,07745德国耶拿(Jena),麦克斯·普朗克(Max Planck)光子学院。https://orcid.org/0000-0002-3091-1441 Zlata Fedorova,固态物理研究所,弗里德里希·施莱尔·史列尔(Friedrich Schiller Uni-Cersity Jena),Max-Wien-Platz 1,07743 Jena,德国Jena,德国;和应用物理研究所,Abbe光子学中心,弗里德里希·席勒大学(Friedrich Schiller)大学耶拿,阿尔伯特·恩斯坦 - 斯特(Albert-Einstein-STR)。15,07745德国耶拿,安吉拉·贝雷达(Angela I. Barreda),固态物理研究所,弗里德里希·席勒(Friedrich Schiller Uni-Cersity),耶拿(Jena),马克斯 - 韦恩·普拉茨(Max-Wien-Platz)1,07743德国耶拿(Jena);弗里德里奇(Friedrichschilleruniversityjena),阿尔伯特·埃因斯坦(Albert-Einstein-STR),弗里德里希(Friedrichschilleruniversityjena)应用物理学研究所。15,07745德国耶拿;以及AVDA马德里大学卡洛斯三世分校的展示和光量应用程序。de la大学,30岁,莱加纳,28911马德里,西班牙,斯特凡·伯纳,应用物理研究所,阿贝·光子学院,弗里德里希·席勒大学耶拿,阿尔伯特·史特恩·斯特林。15,07745德国耶拿;和麦克斯·普朗克(Max Planck)摄影学院,汉斯·斯特拉斯(Hans-Knöll-Straße)1,07745德国耶拿(Jena)15,07745 Jena,Ger-许多Falk Eilenberger和Thomas Pertsch,Applied Physics研究所,Abbe Photonics,弗里德里希·席勒大学Jena,Albert- Einstein-STR。15,07745德国耶拿; Max Planck Photonics,Hans-Knöll-Straße1,07745 Jena,德国;和弗劳恩霍夫(Fraunhofer)应用光学和精密工程IOF,Albert-Einstein-Straße7,07745 Jena,德国伊萨贝尔·斯塔德(Isabelle Staude),固体状态研究所,弗里德里希·施莱尔·施莱尔·席勒(Friedrich Schiller Uni-Versity)弗里德里奇(Friedrichschilleruniversityjena),阿尔伯特·埃因斯坦(Albert-Einstein-STR),弗里德里希(Friedrichschilleruniversityjena)应用物理学研究所。
神话和古代印度医学的融合,尤其是阿育吠陀,是对文化遗产和科学努力的迷人综合。阿育吠陀涵盖了广泛的实践,包括药理学,解剖学,生理学,手术和妇产科,并整合了印度神话的丰富挂毯,从而提供了对健康和疾病的全面理解。将神话人物和叙事包括在古代印度医学的话语中,为精神和经验知识的融合提供了独特的观点,突出了神话在塑造临床医学基础原理中的作用。话语探讨了阿育吠陀及其神话基础对当代临床实践的深远影响,强调了嵌入古代叙事中的永恒智慧。这些故事代表了整体医学实践的基础,强调了在现代治疗范式中越来越多地证实的思想,身体和精神之间的奇偶恋。Sushruta和Charaka古老的文本中详细介绍的哲学和方法,再加上Dhanvantari和Bharadwaja的寓言故事,对基本原理做出了重大贡献,这些原理是今天的整体医疗方法。阿育吠陀及其神话叙事的持久遗产继续影响并激发了整体医疗保健方法,强调了古代智慧与现代医疗实践之间不可磨灭的联系。
加拿大帝国商业银行加勒比分行举办“点燃创新”数据科学与人工智能网络研讨会 2024 年 7 月 19 日星期五 - 2024 年 7 月 5 日星期五,在巴巴多斯的沃伦斯大宅成功举办了“点燃创新”数据科学与人工智能客户演示。由加拿大帝国商业银行加勒比分行技术团队牵头,此次混合活动深入探讨了人工智能 (AI) 在增强银行业务和业务方面的重要作用。演示吸引了来自线下和线上的多样化观众,确保了广泛的可访问性和互动性。此次活动由企业客户、IT 利益相关者和政府官员参加,提供了绝佳的交流机会并促进了行业主要参与者之间的合作。与会者有机会与演讲者互动,参与互动问答环节,并获得有关如何将人工智能融入其整体业务战略的实践知识。此次活动重点介绍了人工智能的快速发展,其中包括个性化客户服务、内容创建、数据提取和竞争对手监控等关键举措。网络研讨会的主题是“如何让人工智能 (AI) 和数据科学为您和您的企业服务”,全面概述了人工智能在现代商业中发挥的关键作用。会议强调了人工智能在提高客户便利性和效率方面的重要性,并说明了企业如何利用人工智能来简化运营、降低成本和推动创新。加拿大帝国商业银行高级数据科学家 Stephan Barrow 谈到了银行业务的好处,他强调,自 2019 年以来,该银行一直在使用预测分析和软件开发来创建一个成功的数字贷款渠道,该渠道由数据科学和自动化支持,提供 15 分钟的贷款。研讨会的一个重点是受 COVID-19 疫情推动的网上银行的加速采用。这场疫情不仅凸显了数字解决方案的必要性,也为更加无缝和用户友好的银行体验铺平了道路。加拿大帝国商业银行加勒比分行已经接受了这一转变,利用人工智能提供创新解决方案,满足客户不断变化的需求。主要演讲人、客户产品盈利战略高级经理 Quinn Weekes 分享了他对人工智能在银行和业务转型中的作用的宝贵见解。Weekes 强调,与普遍看法相反,人工智能最好与人类输入和知识应用协同使用,以减少员工工作量并提高效率。在解决人们对人工智能取代人类工作的担忧时,Weekes 向与会者保证,人工智能旨在增强人类能力,而不是取代人类。他强调,人工智能可以接管重复性任务,让人类员工专注于工作中更具战略性和创造性的方面。此外,他强调了银行对数据保护的承诺,
摘要:本文介绍了对无人机情境意识(SA)(SA)的全面调查,描述了其应用,局限性和基本算法挑战。它突出了高级算法和战略见解的关键作用,包括传感器集成,强大的协调框架和复杂的数据处理方法。纸张批判性地构成了多方面的挑战,例如实时数据处理需求,动态环境中的适应性以及高级AI和机器学习技术引入的复杂性。关键贡献包括对诸如精密农业,灾难管理和城市基础设施监测等行业中无人机中心的变革潜力的详细探索,这是案例研究的支持。此外,该论文研究了路径规划和控制的算法方法,以及多代理合作社SA的策略,解决了各自的chal菌和未来的方向。此外,本文讨论了即将到来的技术进步 - 旨在克服当前局限性的能源有效的AI解决方案。这项整体审查提供了对UAV中心的SA的宝贵见解,为将来的重新搜索和该领域的实际应用建立了基础。
由于预期寿命和生活方式的改变,韩国老年人之间的糖尿病患病率和相关的公共卫生负担都不断增加。老年患者的糖尿病管理因年龄相关的生理变化而复杂化,肌肉减少症的特征是肌肉质量和功能,合并症以及功能,认知和移动能力的不同水平,导致脆弱。此外,糖尿病的老年患者经常面临多种慢性病,以提高其心血管疾病,癌症和死亡率的风险。它们还容易发生,例如高血糖羟基状态,糖尿病性酮症酸中毒和严重的低血糖。本综述研究了老年人糖尿病的特征和管理方法,并倡导采取全面而个性化的策略。
印度政府制定了一项全面战略,通过研究基础设施审查、开发气候适应性作物品种、在 1000 万农民中推广自然耕作以及建立生物投入资源中心等举措来提高农业生产力和恢复力。此外,还努力实现豆类和油籽的自给自足、发展蔬菜生产集群、在农业中实施数字公共基础设施以及通过 NABARD 支持养虾业。这些举措旨在实现农业现代化并确保整个行业的可持续增长。让我们简要总结一下每一项战略,并讨论政府计划在这些领域的进展情况。
我们将肯·威尔伯(Ken Wilber)的整体理论应用于AI治理,证明了其在当前多方面的AI治理景观中系统化多种方法的能力。通过分析道德考虑,技术标准,文化叙事和监管框架,通过整体理论的四个象限,我们为治理需求提供了全面的观点。这种方法将AI治理与人类价值观,心理健康,文化规范和强大的监管标准保持一致。整体理论对互连的个人和集体经验的重视探讨了与AI相关问题的更深层方面。此外,我们建议将整体理论用作文献评论的方法,以克服在AI治理的传统评论中经常看到的分散的理解。
摘要:通过应用程序编程界面(API)通过应用程序对系统进行通信在软件应用程序和系统之间的无缝互动中起关键作用,以实现高效和自动化的服务交付。API促进了跨不同平台的数据和功能的交换,从而提高了运营效率和用户体验。但是,这也引入了攻击者可以利用损害系统安全性的潜在漏洞,突出了识别和减轻相关安全风险的重要性。通过使用安全开放式目录(如CWE和CAPEC)检查这些API固有的弱点,以及来自NIST SP 800-53的控制控制,组织可以显着增强其安全姿势,保护其数据和系统免受潜在威胁。但是,由于不断发展的威胁和脆弱性,此任务具有挑战性。此外,鉴于API呼叫产生的大量流量,分析威胁是一项挑战。这项工作有助于应对这一挑战,并为通过API呼叫在系统到系统沟通中的威胁做出新的贡献。它引入了一个集成的体系结构,该体系结构结合了深度学习模型,即Ann和MLP,以从大型API调用数据集中有效检测威胁检测。分析了确定的威胁,以确定改善整体弹性的适当缓解。使用Windows PE恶意软件API数据集对所提出的方法进行了验证,达到了88%的平均检测准确性。此外,这项工作还引入了整个AI生命周期的透明度义务实践,从数据集预处理到模型绩效评估,包括数据和方法透明度以及Shapley添加说明(SHAP)分析,因此所有用户组都可以理解AI模型。总结了实验的结果,以提供关键功能的列表,例如FindResourceexa和Ntclose,它们与潜在的弱点和相关威胁相关,以确定管理威胁的准确控制动作。