方法 研究设计为国际多队列合作。使用 Logistic 回归比较 2012 年 1 月 1 日后开始使用整合酶链转移抑制剂 (INSTI)、当代非核苷逆转录酶抑制剂 (NNRTI) 或加强蛋白酶抑制剂 (PI/b) 和两种核苷(酸)开始 ART 后 12 3 个月的病毒学和免疫学结果。综合治疗结果 (cTO) 将成功定义为 VL < 200 HIV-1 RNA 拷贝/mL,没有改变治疗方案,也没有艾滋病/死亡事件。免疫学成功定义为 CD4 计数 > 750 细胞/ l L 或增加 33%,而基线 CD4 计数为 ≥ 500 细胞/ l L。泊松回归比较了临床失败(开始 ART 后 ≥ 14 天的艾滋病/死亡)。确定了每个终点的 ART 类别与年龄、CD4 计数和 VL 之间的相互作用。
摘要 — 戏剧作品中的情感识别在基本的人机交互、情感计算和其他各种应用中起着关键作用。传统的单模态情感识别系统在捕捉人类情感的复杂性和细微差别方面往往面临挑战。为此,本研究调查了多种模态信息的整合,包括面部表情、语音和生理信号,以增强情感识别系统的稳健性和准确性。通过结合这些不同的信息来源,我们的目标是更全面地了解人类的情感,并提高情感识别模型的性能。该研究探索了各种方法,包括特征融合、注意力机制和跨模态迁移学习,以有效地结合和利用来自面部表情、语音和生理信号的信息。此外,我们解决了与领域适应和缺失数据处理相关的挑战,确保所提出的多模态方法在数据收集条件可能变化的现实场景中保持稳健。为了证实所提出方法的有效性,我们在为多模态情感识别精心制作的基准数据集上进行了实验。该数据集包括通过面部特征、录音和生理传感器捕捉到的各种情绪表达。评估指标经过精心选择,以评估模型在各种模式下捕捉人类情绪的复杂性和细化程度的能力。我们的研究通过深入了解面部表情、语音和生理信号之间的相互作用,加深了对多模态情绪识别的理解。所提出的框架不仅提高了情绪识别的准确性,而且还提供了对情绪状态的更全面理解,促进了人机交互和情感计算应用的进步。
在整个人类历史上的不同文明中,将迷幻药用于各种目的都是很常见的,并且已经在一个多世纪的时间进行了科学探索。尽管迷幻药的应用在治疗各种精神病和神经系统迹象以及促进幸福感和个人成长方面表现出了希望,但也已经确定了几种与迷幻有关的风险和挑战。迷幻整合(PI)是指各种实践,这些实践可将危害最小化或最大化与迷幻使用相关的利益。pi也被认为是迷幻辅助疗法(PAT)的重要组成部分。在临床/心理治疗实践的背景下,已经提出了几种PI模型/方法。但是,尽管这些模型/方法中的许多是理论驱动的,或者有临床应用的史,但每个模型/方法都缺乏任何经验支持,因此不能被描述为基于证据。这是对无数人拥有和在各种背景下拥有迷幻经历的人的劣势,因为近年来使用迷幻药的流行率会增加,并有望进一步增长。因此,与开发和实施基于证据的心理健康实践的一般建议一致,本文呼吁对迷幻整合模型/方法的开发,检查和评估进行科学努力。本文还总结了有关迷幻整合的当前文献,提供了模范途径的清单,这些途径可能对迷幻整合的研究可能会进行,并预测并讨论了以PI为中心的研究的局限性和挑战。
摘要 综述目的 本综述旨在强调与仿生肢体和体感反馈恢复相关的多感觉整合过程日益增长的重要性。 最新发现 通过神经刺激恢复准现实感觉已被证明可为肢体截肢者带来功能和运动益处。近期,与人工触觉相关的认知过程似乎在假肢的完全整合和接受中发挥着至关重要的作用。 摘要 仿生肢体中实现的人工感觉反馈增强了截肢者对假肢的认知整合。多感觉体验是可以测量的,必须在设计新型体感神经假体时予以考虑,其目标是为假肢使用者提供逼真的感觉体验。正确整合这些感觉信号将保证更高水平的认知益处,从而实现更好的假肢并减少感知到的肢体扭曲。
摘要。大多数有关归纳学习的研究一直关注定性学习,这些学习从给定的事实引起了概念性的逻辑式描述。相比之下,定量学习涉及发现表征经验数据的数值定律。这项研究试图通过结合新开发的启发式方法将方程与先前开发的概念学习方法相结合,以整合两种类型的学习,而归纳学习计划AQ11则体现了这两种学习。结果系统,算法,制定了绑定观察到的数据的子集的方程,并得出了明确的逻辑样式描述,以说明这些方程的适用性条件,此外,还引入了几种新的定量ICARNing技术。单位分析通过检查变量的兼容性“单位”。apportionali o'图搜索解决了识别应输入方程的相关变量的问题。暂停搜索通过启发式评估重点关注搜索空间。物理和化学的几个例子证明了算盘的能力。
众所周知,大脑中的可塑性电路通过突触整合和突触强度局部调节机制受到突触权重分布的影响。然而,迄今为止设计的大多数人工神经网络训练算法都忽略了刺激依赖性可塑性与局部学习信号之间的复杂相互作用。在这里,我们提出了一种新型的生物启发式人工神经网络和脉冲神经网络优化器,它结合了皮质树突中观察到的突触可塑性的关键原理:GRAPES(调整误差信号传播的组责任)。GRAPES 在网络的每个节点上实施依赖于权重分布的误差信号调制。我们表明,这种生物启发式机制可以显著提高具有前馈、卷积和循环架构的人工神经网络和脉冲神经网络的性能,它可以减轻灾难性遗忘,并且最适合专用硬件实现。总的来说,我们的工作表明,将神经生理学见解与机器智能相结合是提高神经网络性能的关键。
英国利兹大学利兹大学的地理学和水学院; B英国利兹大学土木工程学院B; C以色列贝特达根农业部土壤侵蚀研究站土壤保护部; D Kinneret Limnological实验室,以色列海洋学和林木研究,以色列米格达尔; E Zuckerberg水研究所,雅各布·布莱斯坦(Jacob Blaustein)的沙漠研究研究所,以色列内盖夫本·古里安大学; F Yorkshire Water Services Ltd,英国布拉德福德; G德国玛格德堡的Helmholtz环境研究中心水生生态系统分析与管理部; H英国伯明翰伯明翰大学地理,地球与环境科学学院; I IHCANTABRIA - 西班牙桑坦德市的de la la cantabria Instituto dehidráulicaInstituto; J布里斯托尔大学布里斯托尔大学工程,数学和技术学院J; K Escuela de Ingenieria y Ciencias,Tecnologico de Monterrey,墨西哥Nuevo
版权页 版权所有 2021 国际药学联合会 (FIP) 国际药学联合会 (FIP) Andries Bickerweg 5 2517 JP 海牙 荷兰 www.fip.org 保留所有权利。 未经引用出处,不得将本出版物的任何部分存储在任何检索系统中或以任何形式或手段(电子、机械、录音或其他方式)转录。 FIP 对因使用本报告中的任何数据和信息而造成的任何损害不承担任何责任。已采取一切措施确保本报告中提供的数据和信息的准确性。 作者: Matthew Hung(FIP 实践发展项目助理) Victoria Chinwendu Ezeudensi(FIP 志愿者,尼日利亚) Gonçalo Sousa Pinto(FIP 实践发展和转型负责人) 本工具包包含来自 FIP 社区和医院药房部门的多项贡献,并在致谢部分列出。编辑:Gonçalo Sousa Pinto(FIP 实践发展与转型负责人)Matthew Hung(FIP 实践发展项目助理)Catherine Duggan(FIP 首席执行官)推荐引用:国际药学联合会 (FIP)。药物协调:药剂师工具包。海牙:国际药学联合会;2021 封面图片:© Tero Vesalainen | shutterstock.com
对授粉过程的准确预测是可持续粮食生产和自然生态系统保护的关键挑战。对于许多植物,花粉扩散是由蜜蜂动物的觅食运动介导的。虽然大多数当前的授粉生态模型都采用随机的花粉运动,但对动物行为的研究表明,授粉昆虫,鸟类和蝙蝠如何依赖感官提示,学习和记忆来参观流量,从而产生复杂的运动模式。基于对授粉和运动模型的简要回顾,我们认为我们需要更好地考虑授粉媒介的认知,以改善从各个空间量表中对动物介导的授粉的预测,从单个流动物到植物,植物,栖息地斑块和景观。我们提出了将行为模型整合到授粉模型中的实用路线图,并讨论该合成如何对植物交配模式和拟合度进行修复预测。在动物行为和植物生态学研究之间的这种串扰将为迫在眉睫的危机提供强大的机械工具来预测和对授粉服务采取行动。
●SIPA教师顾问,Christine Capilouto教授对Capstone项目的指导和监督。●尼日利亚的农村电气化机构(REA)在我们在尼日利亚逗留期间的热情款待 - 安排对Petti和Toto的现场访问,提供他们对迷你网格的见解,并将团队与其他利益相关者联系起来。特别感谢David Otu的勤奋努力和与REA的有效沟通,以确保富有成效的国内访问。●哥伦比亚大学的国际公共事务学院(SIPA)提供了有关旅行物流的财务支持和指导●尼日利亚政府的专家和从业人员,非营利组织,公司和多边组织以及学术界,并咨询了学术界,以分享他们的宝贵知识和专业知识。
