最近的微生物基因组测序工作揭示了大量含有整合酶的移动遗传元件,这些整合酶可能成为有用的基因组工程工具。大型丝氨酸重组酶 (LSR),例如 Bxb1 和 PhiC31,是噬菌体编码的整合酶,可以促进噬菌体 DNA 插入细菌基因组。然而,之前仅鉴定了少数 LSR,它们在人类细胞中的效率有限。在这里,我们开发了一个系统的计算发现工作流程,通过识别数千个新的 LSR 及其同源 DNA 附着位点。我们通过在人类细胞中对 LSR 进行实验表征来验证这种方法,从而产生了三类根据其效率和特异性彼此区分的 LSR。我们识别了可有效整合到与人类基因组正交的合成安装附着位点的着陆垫 LSR、具有计算可预测伪位点的人类基因组靶向 LSR,以及可以单向整合货物的多靶向 LSR,其效率与常用转座酶相似,特异性更高。每个类别的 LSR 在人类细胞中都进行了功能鉴定,总体而言,其质粒重组率比 Bxb1 高出 7 倍,基因组插入效率为 40-70%,载物大小超过 7 kb。总体而言,我们建立了一个范例,用于大规模发现微生物重组酶并直接从微生物测序数据重建其靶位。该策略提供了丰富的资源,包括 60 多种经过实验鉴定的 LSR,这些 LSR 可以在人类细胞中发挥作用,以及数千种额外的候选 LSR,可用于大负载基因组编辑,而不会暴露 DNA 双链断裂。
将生物原理整合到人工嗅觉系统中,导致了气味检测和分类的显着前进。受到自然嗅觉的复杂机制的启发,研究人员正在开发模仿生物嗅觉途径功能的复杂系统。这些系统利用高密度化学主义传感器阵列(HCSA)结合了先进的计算技术,例如FPGA加速的肾小球收敛CUITS(FGCC)和层次图形图形神经网络(HGNN)。这种生物启发的方法可以实现对挥发性有机化合物(VOC)(VOC)的实时自适应反应,从而提高了气味识别的准确性和效率。是多参数sigmoidal传感器激活(MPSA),它通过利用传感器ARS的多种响应来量化VOC。通过模仿生物系统中发现的神经相互作用,通过可编程突触横梁(LIPSC)实施了横向抑制作用。添加 - 时间自组织图(TSOM)促进气味模式的动态聚类,从而使人们对复杂的气味环境有细微的理解。这项研究的一个新方面在于气味填充物的Grassmannian歧管嵌入(GME),该杂物提供了一个数学框架,用于代表和分析气味的多维性质。再加上哈密顿蒙特卡洛优化的反馈(HMC-FB),该系统有效地补偿了传感器读数的漂移,从而确保了随着时间的推移一致的性能。通过弥合生物学灵感与技术创新之间的差距,这些人工嗅觉系统有望彻底改变从环境监测到食品安全和医疗保健的应用。
越来越多的证据表明,肠道菌群体内平衡的失衡会导致大肠癌的发展(CRC)。摩尔杆菌摩尔(S. Moorei)是一种厌氧革兰氏阳性芽孢杆菌,发现在CRC患者的粪便样品中富集。然而,促进CRC进展的S. moorei的信号调节机制尚不清楚。使用三种CRC小鼠模型(APC最小小鼠,AOM/DSS处理的小鼠和皮下结直肠异种移植小鼠)和两种细胞系(DLD-1和HT-29)(DLD-1和HT-29)来研究Moorei在Vivo和In Vivo肿瘤进展的S. Moorei的生物学功能和分子机制。摩尔链球菌的丰度在粪便样品和肿瘤组织中增加,并且与CRC的肿瘤分期显着相关。S。Moorei在各种CRC小鼠模型中促进了肿瘤的进展,并且与结肠粘膜上皮细胞相比,它有选择地遵守癌细胞,增强了CRC细胞增殖并抑制细胞凋亡。从机理上讲,含有含磷酸化的PI3K-AKT-MTOR-C-MYC途径的含有整联蛋白α2/β1的链球菌CLAL蛋白CNA B型结构蛋白与整联蛋白α2/β1结合,从而通过磷酸化激活了PI3K-AKT-MTOR-C-MYC途径,从而促进了肿瘤细胞的生长和进展。整合素α2/β1的阻塞消除了体外和体内的摩尔链球菌介导的致癌反应。总而言之,这项研究表明,摩尔链球菌通过整联蛋白α2/β1-PI3K-AKT-MTOR-C-MYC信号通路促进了肿瘤进展,该途径是一种新型的特异性病原体介导的机制,可能是CRC预防,诊断和治疗的新潜在靶标。
本文提出了一个方法论框架,用于在精确肿瘤学的背景下评估个性化的癌症治疗。框架将N-1-1试验与匹配的队列分析集成在一起。n-1-of-1试验根据个体患者特征优化药物选择和给药,而匹配的队列分析(使用倾向得分匹配)可以对个人和人群水平的治疗效果进行强有力的评估。这减少了选择偏见,并促进了治疗队列之间有意义的比较。这种综合策略桥梁桥梁个性化的护理和人口水平的证据,为推进个性化癌症疗法提供了可扩展的现实世界模型。虽然这种方法植根于西方医学研究方法,但它与“综合征分化和治疗”的传统中医(TCM)原理具有基本相似之处。这种一致性使其特别适合独立或组合评估西方和TCM方法。该框架允许将个性化方法整合到严格的研究方法中,从而将患者护理与人群级别的证据弥补(图1)。
在发生内部短路的情况下,使用Dual-Fuse和Auxilariary Crowbar开关断开故障的腿,然后是备用腿(图。1,红色虚线框)自发连接,从而可以连续操作。为了提高系统的可靠性和紧凑性,可以在功率半导体[5],[6]组件(IGBTS,MOSFET等)上单层整合使用的熔断器,如图1(Fuse-On-transistor,蓝色虚线框)。在功率上的保险丝的集成分两个步骤进行了半导体组件。首先,熔断器,称为“独立保险丝”(图1,绿色虚线盒),由硅基板上的薄铜层(18 µm)制成,以研究组件的热和电气行为。
Justine Perino、Amandine Gouverneur、Fabrice Bonnet、Marin Lahouati、Noelle Bernard 等人。以 75 岁以下人群为目标,采用基于药物风险的方法优化药物协调:一项观察性研究。 Thérapie,2021 年,�10.1016/j.therap.2021.06.003�。�hal- 03328620�
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
摘要:随着越来越多的活动转移到线上,对数据中心的需求也在增加,这增加了数据中心的能源消耗和由此产生的温室气体排放。为数据中心提供可再生能源通常被视为解决这一问题的主要方法。然而,它们的整合带来了多重挑战。解决这些挑战,主要是灵活性和能源效率,需要多学科技能。因此,本文旨在回顾几个互补学科的科学努力:电气工程、计算机科学、控制系统工程和运筹学。它涵盖了数据中心架构、基础设施规模和信息和能源方面的资源管理。对当前进展进行了总结,并列出了尚待解决的挑战。
抽象的许多资源现在正在生成,加工,存储或提供与肾脏相关的分子,病理和临床数据。参考本体提供了一个支持知识,数据组织和集成的机会。肾脏精密医学项目(KPMP)团队在人类表型本体论(HPO)中贡献了329个肾脏表型术语(HPO),并确定了许多急性肾脏损伤(AKI)或慢性肾脏病(CKD)的许多子类别。肾脏组织本体论(KTAO)进口并整合了现有本体论(例如HPO,CL和Uberon)的肾脏相关术语,并代表了259个与肾脏相关的生物标志物。我们还开发了一种精确的医学元数据本体论(PMMO),以整合来自KPMP和Cellxgene资源的50个变量,并应用PMMO进行综合分析。在健康对照或AKI/CKD疾病状态下特别分析了肾脏基因生物标志物的基因表达谱。这项工作演示了基于本体的方法如何支持多域数据以及知识组织和集成以提高精度医学。引言肾脏精密医学项目(kpmp)(https://www.kpmp.org/)是一个NIH/NIDDK-FUND的财团,旨在精确地表征慢性肾脏病(CKD)的复杂性(CKD)和急性肾脏受伤(AKI)在患者水平上以提高我们的能力治疗(以提高我们的能力),以提高我们的能力(1)。虽然AKI是肾功能的突然且通常是暂时的暂时丧失,但CKD在很长一段时间内会降低肾脏功能,并可能导致末期肾脏疾病。但是,也可以观察到从AKI到CKD的过渡。AKI和CKD与涉及遗传,病理,分子,社会和环境因素的复杂发病机理有关。尽管做出了巨大的努力,但尚未完全理解肾脏疾病发展和发展的基础机制,部分原因是整合来自多个知识领域的数据的挑战。因此,整合与肾脏疾病有关的不同类型的数据应该成为进一步深入研究的主题。最近已努力生成与肾脏相关的数据,并使研究人员公开使用。人类生物分子图集计划(Hubmap)旨在开发一个开放且全球的平台来绘制人体健康细胞(2)。人类细胞地图集项目(HCA)是一个全球财团,旨在绘制人体中的每种细胞类型并开发人类细胞的3维地图集,以改变我们对生物学和疾病的理解(3)。与HCA密切相关的Cellxgene资源是一套计算工具,可帮助科学家存入,下载,查询和视觉探索策划和标准化的单细胞生物学数据集(4)。
在我们的高级实验室中,我们对经过处理的纸进行了全面的分析测试套件。傅立叶变换红外光谱(FTIR)证实了新的酯键的形成,其明显的吸收峰出现在1730 cm⁻见附近,表明成功嫁接。差异扫描量热法(DSC)和热重分析(TGA)证实,该纸张在超过230°C的温度下保持结构完整性,这是包装暴露于各种气候和分布条件的基本参数。动态机械分析(DMA)表明,该论文在广泛的温度范围内保留了稳定的粘弹性模量,从而确保了一致的机械性能。通过扫描电子显微镜(SEM)和原子力显微镜(AFM)进行高分辨率成像显示出均匀的,无缺陷的表面形态,证明了我们整合过程的功效。通过扫描电子显微镜(SEM)和原子力显微镜(AFM)进行高分辨率成像显示出均匀的,无缺陷的表面形态,证明了我们整合过程的功效。