引入肺发育期间,原始上皮细胞以精确的时机的形式增殖,迁移和改变表型认同,并由来自地下膜(BM)的信号锚定,这是一种专门的细胞外基质(ECM)结构,在特定的开发检查点(1)精确重塑了(1)。一旦肺发育完成,靶向替代上皮细胞并缓慢的肺泡BM的转移速度缓慢,可保护成熟肺内稳态期间的肺泡结构。然而,随着BM年龄(2),上皮细胞失去了有效增殖和分化的能力,随着时间的流逝,对慢性肺部疾病的敏感性增加。与时间精确的发育和相对静止的成年肺相比,必须迅速进行急性肺损伤的修复,以恢复气体交换上皮的生存率。修复的即时性会导致上皮增殖和分化。对于野生型小鼠,由单剂量的气管内脂多糖(LPS)诱导的轻度肺损伤很容易在几天内回收,克服了炎症衍生的蛋白水解损害对BM的BM(3,4)。lps测试了肺泡的再生潜力,暴露了上皮相互作用的损害,这些相互作用可能加剧肺损伤或倾向于加速衰老。整联蛋白是由结合ECM配体的α和β亚基组成的异二聚体跨膜蛋白受体。整联蛋白提供细胞与ECM之间的物理连接,它们传播了往返于周围矩阵的信号传导(5-7)。的24个整联蛋白异二聚体,12个包含β1亚基,而上皮组织中存在12β1的整合素中的许多。整合素功能取决于发展和微环境环境,这是与我们以前的工作一致的概念。我们先前报道了正常肺发育需要上皮β1整联蛋白,并且在缺席的气道分支和肺泡化的情况下受到损害,并且与不完整的上皮
抽象背景激动剂诱导的血小板激活,具有整合素αIIBβ3构象变化,是纤维化结合所必需的。这在特定条件下被认为是可逆的,允许第二阶段的血小板聚集。区分长血小板的永久性或瞬态激活状态的信号传导途径很差。目的是探索由胶原受体糖蛋白VI(GPVI)诱导的血小板信号传导机制或蛋白酶激活的受体(PAR)的凝血酶,以调节时间依赖性αIIIBβ3激活。方法血小板用胶原蛋白相关的肽(CRP,刺激GPVI),凝血酶受体激活肽或凝血酶(刺激PAR1和/或4)激活。整合素αIIBβ3激活和P-选择素表达通过两色流细胞仪评估。添加激动剂之前或之后,应用了信号通路抑制剂。通过显微镜研究了血小板扩散的可逆性。用药理学抑制剂进行血小板预处理的结果降低了蛋白激酶C(PKC)>糖原合酶激酶3>β-arrestin>β-arrestin> phypartin> phlospin> phosparatin> phosphatidylinosi-3-依基的GPVI-和PAR诱导的整联蛋白αIIBβ3激活和P-选择蛋白的表达。处理后显示次级αIIIBβ3失活(不是P-选择素表达),但这种可逆性是将CRP和PAR1激动剂固定的。对常规PKC同工型的结合抑制对整联蛋白闭合最有效。这些发现与有效抗血小板治疗的优化有关。用ticagrelor进行前后处理,阻止了P2Y 12腺苷二磷酸(ADP)受体,增强了αIIIBβ3失活。扩散测定表明,PKC或P2Y 12抑制作用引起了从荧光纤维的部分转化为更盘状的血小板形状。结论PKC和Autocrine ADP信号传导在PAR1/GPVI> PAR4刺激的顺序中有助于持续的整合蛋白αIIIBβ3激活,因此有助于稳定血小板聚集。
最近,人类CD34 +造血干细胞(HSC)已被纯化为大约三分之一细胞的频率,该频率为CD34 + CD38 CD38 CD45RA CD90 +/内皮蛋白C受体(EPCR) + HSC。这项工作旨在评估CD34 + HSC隔离的方法,探索抗体克隆,结合物,细胞来源以及其他细胞表面抗原(整合素A 6,CLEC9A和GPRC5C)的差异,以增强这些EPCR + HSC的纯度。我们在这里强调实验计划和抗体面板选择的重要性,这些选择是从多个来源中隔离这些人类HSC,并就用于此目的的试剂的陷阱提供了重要说明。我们的结果应该使实验室测试之间的结果更好地可重复性,以及进一步的工作,以改善人类HSC的富集。©2025作者。由Elsevier Inc.代表国际实验血液学学会出版。这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)
是促炎性和纤维化过程的关键调节剂。 在正常的生理条件下,PAI-1在调节伤口愈合中起重要作用。 但是,过度的PAI-1活性通过在多个潜在步骤中破坏伤口愈合的有序过程来促进纤维化。 首先,通过抑制纤维蛋白溶解,PAI-1支持炎性临时纤维蛋白基质的持久性。 第二,PAI-1通过与细胞整合素直接相互作用来增强炎症细胞的浸润。 后一个过程可能与肺纤维化的发展特别相关,因为PAI-1已被证明可以促进渗出巨噬细胞募集到肺部,并在巨噬细胞中诱导促纤维化极化。 pai-1也据报道直接促进肌纤维细胞分化和胶原蛋白合成,并与TGF-β协同相互作用以维持纤维化反应。 在临床前研究中,MDI-2517在类似阻尼斯特的模式下起作用,可将PAI-1的病理水平降低到正常的生理水平,从而在促炎和促纤维化过程中减少治疗性降低。是促炎性和纤维化过程的关键调节剂。在正常的生理条件下,PAI-1在调节伤口愈合中起重要作用。但是,过度的PAI-1活性通过在多个潜在步骤中破坏伤口愈合的有序过程来促进纤维化。首先,通过抑制纤维蛋白溶解,PAI-1支持炎性临时纤维蛋白基质的持久性。第二,PAI-1通过与细胞整合素直接相互作用来增强炎症细胞的浸润。后一个过程可能与肺纤维化的发展特别相关,因为PAI-1已被证明可以促进渗出巨噬细胞募集到肺部,并在巨噬细胞中诱导促纤维化极化。pai-1也据报道直接促进肌纤维细胞分化和胶原蛋白合成,并与TGF-β协同相互作用以维持纤维化反应。在临床前研究中,MDI-2517在类似阻尼斯特的模式下起作用,可将PAI-1的病理水平降低到正常的生理水平,从而在促炎和促纤维化过程中减少治疗性降低。
4。Feng C,Deng L,Yong YY等。 生物材料在脊髓损伤中的应用。 int J Mol Sci。 2023; 24(1):816。 出版了2023年1月3日。doi:10.3390/ijms24010816 5。 Yu F,Li P,Du S等。 嗅觉分配细胞播种脱细胞支架可促进脊髓损伤大鼠的轴突再生。 J Biomed Mater Res A. 2021; 109(5):779-787。 doi:10.1002/jbm.a.37066 6。 Vatansever S,Schlessinger A,Wacker D等。 中枢神经系统疾病中的人工智能和机器学习辅助药物发现:最新的艺术和未来方向。 Med Res Rev. 2021; 41(3):1427-1473。 doi:10.1002/med.21764 7。 ÁlvarezZ,Kolberg-Edelbrock AN,Sasselli IR等。 具有增强超分子运动的生物活性支架可促进脊髓损伤的恢复。 科学。 2021; 374(6569):848-856。 doi:10.1126/science.abh3602 8。 Sangji MH,Lee SR,Sai H,Weigand S,Palmer LC,Stupp SI。 自我分级与肽两亲物超分子纳米结构中的共同组合。 acs nano。 2024; 18(24):15878-15887。 doi:10.1021/acsnano.4C03083 9。 Hendricks MP,Sato K,Palmer LC,Stupp SI。 超分子的肽两亲。 ACC CHEM RES。 2017; 50(10):2440-2448。 doi:10.1021/acs.accounts.7b00297 10。 yan L,Cui Z.整合素β1和神经系统损伤后修复。 EUR NEUROL。 2023; 86(1):2-12。 doi:10.1159/000526690Feng C,Deng L,Yong YY等。生物材料在脊髓损伤中的应用。int J Mol Sci。2023; 24(1):816。出版了2023年1月3日。doi:10.3390/ijms24010816 5。Yu F,Li P,Du S等。 嗅觉分配细胞播种脱细胞支架可促进脊髓损伤大鼠的轴突再生。 J Biomed Mater Res A. 2021; 109(5):779-787。 doi:10.1002/jbm.a.37066 6。 Vatansever S,Schlessinger A,Wacker D等。 中枢神经系统疾病中的人工智能和机器学习辅助药物发现:最新的艺术和未来方向。 Med Res Rev. 2021; 41(3):1427-1473。 doi:10.1002/med.21764 7。 ÁlvarezZ,Kolberg-Edelbrock AN,Sasselli IR等。 具有增强超分子运动的生物活性支架可促进脊髓损伤的恢复。 科学。 2021; 374(6569):848-856。 doi:10.1126/science.abh3602 8。 Sangji MH,Lee SR,Sai H,Weigand S,Palmer LC,Stupp SI。 自我分级与肽两亲物超分子纳米结构中的共同组合。 acs nano。 2024; 18(24):15878-15887。 doi:10.1021/acsnano.4C03083 9。 Hendricks MP,Sato K,Palmer LC,Stupp SI。 超分子的肽两亲。 ACC CHEM RES。 2017; 50(10):2440-2448。 doi:10.1021/acs.accounts.7b00297 10。 yan L,Cui Z.整合素β1和神经系统损伤后修复。 EUR NEUROL。 2023; 86(1):2-12。 doi:10.1159/000526690Yu F,Li P,Du S等。嗅觉分配细胞播种脱细胞支架可促进脊髓损伤大鼠的轴突再生。J Biomed Mater Res A.2021; 109(5):779-787。 doi:10.1002/jbm.a.37066 6。Vatansever S,Schlessinger A,Wacker D等。中枢神经系统疾病中的人工智能和机器学习辅助药物发现:最新的艺术和未来方向。Med Res Rev.2021; 41(3):1427-1473。 doi:10.1002/med.21764 7。ÁlvarezZ,Kolberg-Edelbrock AN,Sasselli IR等。具有增强超分子运动的生物活性支架可促进脊髓损伤的恢复。科学。2021; 374(6569):848-856。 doi:10.1126/science.abh3602 8。Sangji MH,Lee SR,Sai H,Weigand S,Palmer LC,Stupp SI。自我分级与肽两亲物超分子纳米结构中的共同组合。acs nano。2024; 18(24):15878-15887。 doi:10.1021/acsnano.4C03083 9。Hendricks MP,Sato K,Palmer LC,Stupp SI。超分子的肽两亲。ACC CHEM RES。 2017; 50(10):2440-2448。 doi:10.1021/acs.accounts.7b00297 10。 yan L,Cui Z.整合素β1和神经系统损伤后修复。 EUR NEUROL。 2023; 86(1):2-12。 doi:10.1159/000526690ACC CHEM RES。2017; 50(10):2440-2448。 doi:10.1021/acs.accounts.7b00297 10。yan L,Cui Z.整合素β1和神经系统损伤后修复。EUR NEUROL。2023; 86(1):2-12。 doi:10.1159/000526690
简单总结:乳腺癌是女性中最常见的癌症,也是癌症相关死亡的主要原因。尽管有几种治疗方法,但全身化疗仍然是主要选择,尤其是对于晚期乳腺癌的治疗。不幸的是,全身化疗会引起许多副作用和对远端器官的损害,并且需要高剂量的药物才能在肿瘤区域达到治疗浓度。使用纳米系统进行药物输送是一种有希望克服这些缺点的策略。在这项研究中,我们开发了含有化疗药物多西他赛的聚(乳酸-乙醇酸)纳米颗粒 (PLGA-NPs),用环状 RGD 三肽功能化,以允许对乳腺癌中过表达的 α v β 3 整合素进行主动靶向。我们证明 PLGA 在临床前模型中有效地将药物输送到乳腺癌细胞,并且比游离多西他赛更有效地阻止肿瘤进展,同时减少副作用。
骨关节炎 (OA)、类风湿性关节炎 (RA) 和腰痛等肌肉骨骼疾病是全球第二大致残原因,给社会带来了沉重的生理和经济负担 [1,2]。这类疾病的特点是组织退化和炎症活动,可导致慢性疼痛和严重的关节损伤 [3]。具体而言,骨关节炎关节因其承重特性,最容易受到关节软骨退化和滑膜炎症的影响,久而久之会导致关节功能和活动能力丧失。炎性细胞因子[如白细胞介素 (IL)-1、IL-6、肿瘤坏死因子 α (TNF α )] 和降解酶[如基质金属蛋白酶 (MMP)13、具有血小板反应蛋白基序 5 的解整合素金属蛋白酶 (ADAMTS5)] 等生物因素的过度表达会加速骨关节炎的进展,尤其是在关节损伤的情况下 [4]。软骨的无血管特性限制了其自我再生能力;因此需要及时的治疗干预来修复组织并抑制病情进一步进展 [5]。
摘要:局部粘着激酶 (FAK) 是一种非受体酪氨酸激酶,在成人和儿童癌症中均过度表达和激活,在调节恶性表型的发病机制和进展中起着重要作用。FAK 通过两种不同的方式在癌症中发挥作用:一种是细胞质中的激酶活性,主要依赖于整合素信号传导,另一种是通过与不同的基因表达调节剂联网进入细胞核的支架活性。因此,FAK 必须被视为具有高治疗价值的靶点。事实上,有证据表明,FAK 靶向治疗可以有效,无论是单独治疗还是与其他已有治疗方法联合使用。在这里,我们概述了关于 FAK 结构和核功能的新见解,特别关注了有关这种蛋白质在癌症中的作用的最新发现。此外,我们还提供了目前正在对癌症患者进行临床试验的 FAK 抑制剂的最新更新,并讨论了基于药物的抗 FAK 靶向疗法的挑战和未来方向。
肿瘤细胞对凋亡的耐磨性代表了对化学疗法的耐药性的主要机制。SMAC/暗黑破坏神的模拟物被证明是有效克服癌症可获得的抗凋亡的抗凋亡性,这是由于抗凋亡蛋白XIAP,CIAP1和CIAP2的过表达。在这项工作中,我们描述了一种能够选择性激活癌细胞凋亡的双靶点肽。该复合物由荧光周期性介孔有机硅纳米粒子组成,该纳米粒子携带SMAC/DIABLO的短序列与αVβ3 - 整合素配体结合。双重靶向肽@PMO在αVβ3阳性HELA细胞中相对于αVβ3阴性HT29细胞的毒性明显更高。@pmo在αVβ3阳性癌细胞中与奥沙利铂联合结合表现出协同作用,而XIAP过表达或整联蛋白β3沉默来克服其毒性。αVβ3阳性细胞成功摄取该分子,使@PMO有望重新敏感以对许多癌症类型的细胞凋亡。
摘要:细胞表面蛋白酶(也称为外蛋白酶)是跨膜和膜结合酶,参与各种生理和病理过程。几个成员,最显著的是二肽基肽酶 4 (DPP4/CD26) 及其相关家族成员成纤维细胞活化蛋白 (FAP)、氨基肽酶 N (APN/CD13)、解整合素和金属蛋白酶 17 (ADAM17/TACE) 以及基质金属蛋白酶 (MMP) MMP2 和 MMP9,通常在癌症中过度表达并与肿瘤功能障碍有关。由于这些外蛋白酶具有多方面的作用,已被证实是癌症的治疗靶点。已经开发出许多抑制剂来靶向这些酶,试图控制它们的酶活性。尽管这些化合物的临床试验在大多数情况下没有显示出预期的结果,但外蛋白酶抑制剂领域正在不断发展。本综述总结了目前关于该主题的知识,并重点介绍了最近开发的更有效、更有选择性的靶向外蛋白酶的药物,其中包括小分子量抑制剂、肽缀合物、前药或单克隆抗体 (mAb) 及其衍生物。这些有希望的途径有可能为癌症治疗提供新的治疗策略。