摘要:细胞表面蛋白酶(也称为外蛋白酶)是跨膜和膜结合酶,参与各种生理和病理过程。几个成员,最显著的是二肽基肽酶 4 (DPP4/CD26) 及其相关家族成员成纤维细胞活化蛋白 (FAP)、氨基肽酶 N (APN/CD13)、解整合素和金属蛋白酶 17 (ADAM17/TACE) 以及基质金属蛋白酶 (MMP) MMP2 和 MMP9,通常在癌症中过度表达并与肿瘤功能障碍有关。由于这些外蛋白酶具有多方面的作用,已被证实是癌症的治疗靶点。已经开发出许多抑制剂来靶向这些酶,试图控制它们的酶活性。尽管这些化合物的临床试验在大多数情况下没有显示出预期的结果,但外蛋白酶抑制剂领域正在不断发展。本综述总结了目前关于该主题的知识,并重点介绍了最近开发的更有效、更有选择性的靶向外蛋白酶的药物,其中包括小分子量抑制剂、肽缀合物、前药或单克隆抗体 (mAb) 及其衍生物。这些有希望的途径有可能为癌症治疗提供新的治疗策略。
成熟的哺乳动物皮质由6个结构和功能上不同的躺物组成。该分层结构组装的两个关键步骤是胶质支架的初步建立以及随后将有丝分裂后神经元迁移到其最终位置。这些过程涉及神经细胞与底物的粘附和脱离的精确和及时调节。尽管对神经元迁移过程中粘合剂的作用和神经胶质支架的形成知之甚少,但了解这些信号如何解释和整合在这些神经细胞中。在这里,我们提供了体内证据,表明CAS蛋白是一个细胞质适配器家族,在皮质层压过程中起功能和冗余作用。CAS三重条件敲除(CAS TCKO)小鼠表现出严重的皮质表型,具有鹅卵石畸形。分子上毒和遗传实验表明,CAS蛋白在跨膜dystroglycan和β1-1-整合素的下游以径向神经胶质细胞自主的方式作用。总体而言,这些数据在形成皮质电路期间为CAS适配器蛋白创建了新的和重要的作用,并揭示了控制皮质支架形成的信号轴。
Torre-Cea I,Guerra-Paes E,Berlana-GalánP,Cáceres-Calle D,Carrera-Aguado I,Marcos-Zazo L,Sánchez-Juanes F,Muñoz-félixJM。 div>萨拉曼卡大学(USAL)和萨拉曼卡生物医学研究所(IBSAL)引言癌症的生物化学和分子生物学系可以从不同的治疗角度来解决癌症,具体取决于其特定特征;其中之一是肿瘤脉管系统,是致癌细胞生长和确定肿瘤微环境所必需的。 div>据此,当血管的形成是由已经形成的其他人形成时,可以将肿瘤归类为血管生成,或者当给出避免血管合成的过程时,肿瘤可以分类为血管生成。 div>提出最严重预后的非血管生成机制,如今似乎是对抗血管生成疗法的抗性是血管共同选择(VCO)。 div>在VCO肿瘤细胞中绑架了先前存在的血液组织血管,在与高度血管化器官相关的肿瘤中可能出现固有或响应不同的治疗方法。 div>这种血管策略中的一个重要点是使用整合素的肿瘤细胞粘附在细胞外基质和血管上,这反过来触发了细胞信号瀑布,从而增加了最严重的致癌特征的表达。 div>这项工作的主要目的是避免整联蛋白β1与配体的结合,以抑制具有这种耐药性的肺转移中的VCO,并使它们更容易受到化学疗法的影响。 div>材料和方法在4T1细胞系的非血管生长的体内BALB/C中进行了三个实验。 div>在其中,使用整合素α5β1:ATN-161,ISODGR和ATN-161的分子抑制剂比较三种治疗方法,并与卡泊蛋白结合使用。 div>该研究基于免疫组织化学和免疫荧光染色,使我们能够量化肿瘤大小,缺氧,血管和肺实质的变化,细胞外基质的纤维,淋巴细胞的纤维T CD8+抗肿瘤。 div>最后,分析了在光学显微镜下拍摄的图像,并进行了统计分析,T-学生和ANOVA。 div>不会改变肺实质,细胞外基质的纤维或淋巴细胞的浸润,但确实会增加这些血管的periticos覆盖范围。 div>在使用ISODGR的第二个模型中,尽管似乎有新容器和缺氧增加,但大小没有变化。 div>更改实质,但保持基质的纤维。 div>增加T CD8+淋巴细胞和periticos覆盖率的浸润。 div>
简介:抗体-药物偶联物 (ADC) 旨在通过将强效细胞毒性药物与单克隆抗体 (mAb) 连接以选择性地将细胞毒性有效载荷递送至肿瘤细胞来增加强效细胞毒性药物的治疗窗口。ADC 的有效性和安全性取决于 mAb 特异性和所用的连接体-有效载荷。几种使用微管抑制剂有效载荷的已获批 ADC 受到临床前和患者中观察到的眼部不良事件的影响。最近出现了一类结合拓扑异构酶 1 抑制剂 (TOP1i) 的连接体-有效载荷,作为基于微管蛋白抑制剂的 ADC 的有效替代品。迄今为止,TOP1i ADC 尚未与微管抑制剂有效载荷所见的剂量限制性眼部毒性相关。我们在此报告了一种 ADAM9(解整合素和金属蛋白酶结构域 9)靶向 ADC 的临床前开发,该 ADC 结合了一种新型聚糖连接的 TOP1i。 ADAM9 是 ADAM 家族多功能 1 型跨膜蛋白的成员,在肿瘤发生和癌症进展中发挥作用,并在多种癌症中过度表达,使其成为癌症治疗的一个有吸引力的靶点。
Rho 家族 GTPases Rho、Rac 和 Cdc42 已成为癌症转移的关键参与者,因为它们在调节细胞分裂和肌动蛋白细胞骨架重排方面发挥着重要作用;因此,在细胞生长、迁移/侵袭、极性和粘附方面也起着重要作用。本综述将重点介绍相近同源物 Rac 和 Cdc42,它们已被确定为多种癌症类型转移和治疗耐药性的驱动因素。Rac 和 Cdc42 在癌症中常常因鸟嘌呤核苷酸交换因子 (GEF) 的过度活化而失调,GEF 属于弥漫性 B 细胞淋巴瘤 (Dbl) 和胞质分裂诱导因子 (DOCK) 家族。Rac/Cdc42 GEF 由多种致癌细胞表面受体激活,例如生长因子受体、G 蛋白偶联受体、细胞因子受体和整合素;因此,许多 Rac/Cdc42 GEF 与转移性癌症有关。因此,抑制 GEF 介导的 Rac/Cdc42 激活代表了一种有希望的转移性癌症靶向治疗策略。在此,我们重点关注致癌 Rac/Cdc42 GEF 的作用,并讨论 Rac 和 Cdc42 GEF 相互作用抑制剂作为转移性癌症靶向治疗的最新进展,以及它们克服癌症治疗耐药性的潜力。
在我们体内,许多潜在的自我修复能力仍然存在,并且可以响应运动和其他适当的身体刺激而被激活。声波,例如低强度冲击波(SW)和低强度脉冲超声(Lipus),提供了这种适当的机械刺激,以通过所谓的“ Me Chanotransduction”机制来促进各种自我修复反应。1 - 3的确,有趣的是,有趣的是,SW或Lipus的声波疗法会诱导特异性的RE生成反应,包括缺血性组织中的血管生成,骨髓组织中的淋巴 - 血管生成,受损神经组织中神经发生的神经发生以及其他通过微血管造成的图形性不足(图形生物学兴趣)的改善)。1这种具有声波刺激后期内源性自我修复能力的治疗方法似乎是可行的,并且在疗效,安全性和医疗成本方面与具有外源性的基因或细胞的分子生物学方法相比,在疗效,安全性和医疗成本方面都是可行的。1有趣的是,SW和Lipus具有机械转导的相同细胞内分子机制,在内皮caveolae中燃烧了β1-1-整合素/小窝蛋白-1络合物,而内皮含量氧化物合成酶(eNOS)则在降低的内皮小窝中。4,5
越来越多的证据指向AFIB发病机理中的免疫系统3,特别是巨噬细胞4。在最近的一项研究中,我们观察到AFIB患者心房组织4的炎症性巨噬细胞和心房纤维化的扩大。为了更好地剖析巨噬细胞,纤维化和AFIB之间的关系,我们开发了一种小鼠模型,该模型通过结合常见的临床危险因素来概括人AFIB:高血压,肥胖和二尖瓣反流(称为荷马)。通过单细胞转录组学比较了人类与AFIB和荷马小鼠的心房组织,记录了AFIB动物模型的高保真度。我们确定了骨桥蛋白,在人类和小鼠中由SPP1编码为SPP1,是AFIB患者和荷马小鼠4的招募心房巨噬细胞中的最高上调基因4。骨桥蛋白是一种保守的多效性基质蛋白,结合了几种整合素和CD44家族受体。巨噬细胞衍生的骨桥蛋白刺激成纤维细胞产生更多的基质蛋白,并且与几种慢性纤维化疾病的进展5。心脏中的纤维化导致心房组织的异质性,它阻碍了均匀的电导传导,并充当AFIB 6的结构底物。最值得注意的是,单核细胞衍生的巨噬细胞中骨桥蛋白的转基因缺失减少了心房纤维化和荷马小鼠4。
SARS-Cov-2 引发了全球范围内的 COVID-19 大流行。ADAM17 是一种解整合素和跨膜金属蛋白酶结构域蛋白,参与调节 SARS-CoV-2 受体 ACE2。然而,它对感染 COVID-19 的癌症患者的影响以及它与滤过性免疫细胞的相关性尚不清楚。本研究基于 GEPIA 比较了正常组织和肿瘤组织中 ADAM17 的表达。研究了 ADAM17 表达与滤过性免疫细胞和免疫调节剂之间的相关性。此外,在 TISDB 数据库中搜索了针对 ADAM17 的治疗药物。我们发现 ADAM17 在许多物种中高度保守,主要在肺、脑、女性组织、骨髓和淋巴组织中表达。它在鼻炎和支气管的呼吸道上皮细胞中也高表达。 ADAM17 在肿瘤中的表达高于几对正常组织中的表达,并且与恶性肿瘤患者的预后呈负相关。有趣的是,ADAM17 的表达与正常和肿瘤组织中的免疫调节剂和免疫细胞滤过显着相关。此外,针对 ADAM17 的八个小分子仅表现出治疗意义。这些发现意味着 ADAM17 在感染 COVID-19 的癌症患者中具有重要意义,并为抗 COVID-19 的发展策略提供了新的线索。
摘要 嗜酸性胃肠道疾病的认识日益加深,这揭示了当前治疗(主要基于饮食调整和皮质类固醇)的局限性,包括难治性、高复发率和需要长期治疗。主要针对嗜酸性食管炎 (EoE) 的研究工作揭示了导致这些疾病的基本病理生理机制,这些机制与特应性表现有一些相似之处,并且嗜酸性胃肠炎 (EGE) 和嗜酸性结肠炎 (EC) 也具有共同点。目前正在对 EoE 进行评估的新型靶向疗法,其中一些是从支气管哮喘和特应性皮炎中引入的。最有希望的是单克隆抗体,包括针对白细胞介素 (IL)-13 (cendakimab) 和 IL-4 (dupilumab) 的单克隆抗体,目前正在进行 3 期试验。抗整合素疗法(维多珠单抗)和 Siglec-8 阻滞剂(安托利马)在 EGE 中的潜力也十分可观。本文回顾了嗜酸性粒细胞性肠道疾病的非生物疗法,包括阻止 Janus 激酶 (JAK)-信号转导和转录激活因子 (STAT) 和 T 辅助细胞 2 细胞 (CRTH2) 信号通路上表达的趋化因子受体的激活,以及嗜酸性粒细胞性肠道疾病中值得研究的其他潜在靶点。
受体酪氨酸激酶 AXL 是一种在癌症中上调的单次跨膜蛋白,与较低的存活率和治疗耐药性有关。AXL 可以被 A 解整合素和金属蛋白酶 (ADAM)10 和 ADAM17 切割,产生可溶性的蛋白质。据报道,可溶性 AXL (sAXL) 升高与肝细胞癌、肾癌、1 型神经纤维瘤病和炎症性疾病的病情进展有关。在目前的研究中,我们分析了黑色素瘤患者血液中的 sAXL 水平,并表明 sAXL 随着病情进展而增加。此外,研究发现,在接受伊匹单抗治疗的 IV 期患者中,sAXL 水平升高与两年生存期较短相关。此外,我们还表明 sAXL 水平与切除的黑色素瘤淋巴结转移中表达 AXL 的细胞百分比有关。这一发现在体外得到了验证,其中细胞培养基中的 sAXL 水平与细胞中的 AXL 表达相对应。使用小分子抑制剂 BGB324 抑制 AXL 可降低 sAXL 水平,而通过增加蛋白质稳定性可提高细胞表达。我们的研究结果表明,量化 sAXL 血液水平是一种简单且易于评估的确定细胞 AXL 水平的方法,应进一步评估其作为疾病进展和治疗反应的生物标志物的用途。