在 RF 通信系统中,振荡器是提供发射器和接收器之间同步的基本组件。RF 收发器中使用的振荡器通常嵌入“合成器”环境中,以精确定义其输出频率。几十年来,合成器设计一直是一项艰巨的任务,导致了数百种 RF 合成技术的出现。基于 PLL(锁相环)的合成器通常通过闭环控制提供更好的稳定性。PLL 概念通过额外的杂散减少技术提高了合成器电路的性能。在反馈环路中使用“分频器”为合成器提供了频率选择性。在 RF IC 领域,合成器分为两大类,即“整数 N”合成器和“小数 N”合成器。本文介绍了使用 LTspice 软件中的分频器设计整数 N 合成器。
摘要 - 出现的加密系统,例如完全型号的加密(FHE)和零知识证明(ZKP)是计算和数据密集型的。fhe和ZKP在软件和硬件中的影响很大程度上依赖于von Neumann架构,在数据移动上损失了大量的能量。有希望的计算范式正在内存(CIM)中进行计算,该计算使计算能够直接发生在内存中,从而减少数据运动和能耗。但是,有效地执行大整数乘法(在FHE和ZKP中至关重要)是一个开放的问题,因为现有的CIM方法仅限于小型操作数尺寸。在这项工作中,我们通过探索用于大整数乘法的高级算法方法来解决这个问题,并将Karatsuba算法确定为CIM应用程序最有效的方法。此后,我们设计了第一个用于电阻CIM横杆的Karatsuba乘数。我们的乘数使用三阶段管道来增强吞吐量,此外,还可以平衡内存耐力与有效的数组大小。与现有的CIM乘法方法相比,当比例扩展到ZKP和FHE所需的位宽度时,我们的设计在吞吐量中最多可实现916倍,而面积时间产品的改进则达到281倍。索引术语 - 在内存中计算,大整数乘以,karatuba乘法
随着技术进步的快速进步,对高处理和存储能力的需求已大大增加。因此,发现操纵和转换信息的新方法是必要的。一种潜在的解决方案是量子信息处理,它大大减少了存储的数据的量,操作数量以及经典工具(例如小波变换(WT))的复杂性。wt是许多领域的主要工具,例如加密,信号编码,水印,组合,掉头和信息检索。其经典相关性推动其在量子水平上的进展,从而提高了对一,二维和三维量子小波的转换的计算效率。但是,常规的,实价的WT不适用于无损应用,并且在计算上很复杂。整数到整数WT(IWT)是另一种转换,将整数映射到整数,它使用起重方案来执行信号分解分析。此方案降低了计算成本,允许对实价WT进行实践无损应用,并产生新的小波家族。到目前为止,整数版本(Q-IWT)尚无定义的QWT定义,这在量子信息处理中可能很有价值。因此,我们为HAAR,DAUBECHIES和CDF核的一维整数小波转换提出了一种量子方法,包括信号分解和无损压缩的量子算法。此外,我们将使用IBM的仿真环境作为分析和验证的手段。我们将使用复杂性和数学分析,性能,挠性,信号恢复,熵和噪声添加指标评估所提出的转换和压缩应用。
整数量子厅系统显示物质的拓扑阶段。不同的Chern号(“ TKNN不变”)对应于不同的阶段。在过渡时没有对称性破裂!“大厅量化”与Chern数字相关,这意味着对扰动的稳健性。
量子计算提出了有关计算问题的有希望的解决方案,但由于当前的硬件约束,大多数量子算法尚无计算实用相关性系统的能力,而经典的对应物则超过了它们。为了实际上从量子体系结构中受益,必须确定具有良好缩放的问题和算法,并根据可用硬件的不同而改善相应的限制。因此,我们开发了一种解决整数线性编程问题的算法,在量子退火器上,并研究了问题和硬件特定的限制。这项工作介绍了如何将ILP问题映射到退火架构的形式主义,如何使用优化的退火计划进行系统地改进计算,并通过模拟对退火过程进行建模。它说明了最小主导设置问题的破坏和多体定位的影响,并将退火结果与量子体系结构的数值模拟进行了比较。我们发现该算法的表现优于猜测,但仅限于小问题,并且可以调整退火时间表以降低脱糖的影响。模拟定性地重现了经过修改的退火时间表的算法改进,这表明这些改进起源于量子效应。
人类青春期的特征是决策和情感调节的一系列变化,这些变化促进了风险和冲动行为。积累的证据表明,在人类青春期中看到的行为和生理转移是由一些灵长类动物共享的,但尚不清楚是否招募了相同的认知机制。我们研究了风险选择,暂时性选择以及对我们最亲密的亲戚黑猩猩的决策结果的发展变化。我们发现,像人类一样,青春期黑猩猩比成年人更具风险。然而,与人类不同,与人类不同,黑猩猩没有表现出暂时性选择的发育变化,尽管与成年人相比,年轻的黑猩猩确实表现出对等待的情绪反应性的升高。比较皮质醇和睾丸激素表明这些生物标志物中与年龄相关的差异,以及选择,情绪反应性和激素的个体差异的模式,也支持风险和选择冲动之间的发展分离。这些结果表明,与黑猩猩共享人类青少年决策的一些核心特征。
0 E2πI / 2 K]及其受控版本。请注意,S = R 2和T = R 3。经常指出,这些量子门以高精度的可用性(在r k中任意小角度,k→∞)都是一个挑战,在理论上,就物理理论的极限而言,在工程理论的极限上,实际上在工程基础上[3-6] 1)2)。在很大程度上,这种关注促使另一个巨大的智力成就,即纠正量子误差代码的发展[7-11]。从Shor的工作开始[12],有大量的耐受量子计算的工作。强阈值定理被证明,这表明在某些误差模型中,如果错误率低于一定阈值,则量子计算至少在理论上可以任意高精度[10,13 - 18]。这些是美丽的数学定理。,但从根本上讲,他们假设u(2)(或su(2)如果我们考虑不相关的相位因子)完全对应于现实中的量子的操作,尤其是在其组成中,该组组成(组成,在其限制的精确性上都定义在C上,则与可实现的可实质物理量子量化的顺序应用相对应。关于这种任意精度是否可以实现的意见。当然是可能的。然而,基于这样的信念,即量子力学本身(就像任何其他物理理论一样)不是,也不是要在描述现实时绝对准确(某些投机性评论在第5节中)。我们假设同时,在过去的几十年中,巨大的效果一直在进行,最近有了更新的动力和热情,并且目的是实现量子电路的更准确的硬件实现。在本文中,我们认为在每个量子控制旋转门的情况下,Shor的量子分解算法都会在角度遇到一个小的随机噪声。
然而,也有许多令人担忧的事态发展。各国报告的所谓“针对公众参与的战略诉讼”(简称 SLAPP 案件)数量不断增加。记者安全平台上报告了 15 起此类案件,涉及克罗地亚、保加利亚、马耳他、英国和罗马尼亚等国家。9 并非所有 SLAPP 案件都会诉诸法庭。在那些为法律诉讼辩护的成本非常高的国家,或者如果有关记者或媒体面临财务压力,一封威胁采取法律行动的信就足以迫使其撤回批评性报道。10 正如人权专员在 2020 年指出的那样,诽谤和隐私法可以轻易地被用于此目的,这令人担忧。到 2021 年底,欧洲委员会和欧盟都已启动解决这一问题的举措:欧洲议会通过了一项旨在制止此类滥用法律行动的决议 11,欧盟委员会发布了公开咨询,作为就此事提供监管建议的一种方式。12 欧洲委员会秘书长认为,针对记者的无理取闹和无理取闹的诉讼越来越多,对言论自由构成了严重威胁, 13 并已任命一个专家委员会就此事起草建议草案。