4 这些作者贡献相同 *通信地址:muhaoran@sslab.org.cn (HM);linshenghuang@sslab.org.cn (SL) 收稿日期:2024 年 9 月 11 日;接受日期:2024 年 12 月 16 日;在线发表日期:2024 年 12 月 23 日;https://doi.org/10.59717/j.xinn-mater.2024.100113 © 2025 作者。这是一篇根据 CC BY 许可开放获取的文章 (https://creativecommons.org/licenses/by/4.0/)。引用:Wang P.、Mu H.、Yun T. 等人 (2025)。1D-2D 横向范德华异质结中的高整流和栅极可调光响应。创新材料 3:100113。自钝化表面和减少的隧穿漏电流使得在范德华 (vdW) 半导体异质结中创建理想的肖特基接触成为可能。然而,同时实现高整流比、低反向漏电流和快速光响应仍然具有挑战性。在这里,我们提出了一种一维 (1D)/二维 (2D) 混合维异质结构光电二极管来解决这些挑战。该结构中显著的价带偏移和最小的电子亲和能差异确保了高整流比和高效的电荷收集。此外,1D 和 2D 材料之间的尺寸差异,其特点是接触面积较小和厚度差异显著,导致低反向漏电流和高电流开关比。此外,它能够实现栅极可调的能带结构转变。我们的器件在室温下表现出 4.7 × 10 7 的出色整流比和 5 × 10 7 的高开关比(V ds = 2 V 和 V g = 30 V)。在 20 V 的栅极电压下,光电二极管实现了 4.9 × 10 14 Jones 的比探测率 (D * )、14 μs 的快速响应时间和接近 1550 nm 的扩展工作波长。混合维度设计和能带工程的战略组合产生了具有出色灵敏度、可重复性和快速响应的 1D-2D pn 异质结光电二极管,凸显了 vdW 半导体在先进光电应用方面的潜力。
摘要 — 本文介绍了一种使用 IC741 的双功能运算放大器电路的新型设计,该电路无需修改电路元件即可进行半波和全波整流。该设计的创新之处在于它只需调整一个反馈电阻即可在整流模式之间切换,从而无需使用额外或替代元件。该电路利用 IC741 的多功能特性来实现这种灵活性,为需要整流的应用提供了一种经济高效且节省空间的解决方案。详细的分析和实验验证表明,所提出的电路在两种整流模式下均保持出色的性能和可靠性。这种双功能方法为紧凑型电子系统中的多用途信号处理开辟了新的可能性。索引词 — 双功能运算放大器、半波整流、全波整流、IC741 运算放大器、可调反馈电阻、多模式整流电路、紧凑信号处理、经济高效的整流设计、多功能运算放大器应用、无需修改组件的整流。
图 2.5 激活函数:(a)S 型函数,(b)双曲正切函数,(c)整流线性单位函数,(d)泄漏整流线性单位函数。......................................................................................................................... 18
已经针对该系统的不同组件进行了文献调查。表一概述了功率转换阶段、高效功率转换的关键组件以及针对每个部分的相关文献调查。最近的调查主要关注功率转换技术 [4], [6], [7]、整流器拓扑 [7], [8] 或从网络角度来看的 RFEH [5], [9]。然而,在已报道的评论中,RFEH 的天线设计并未被视为关键参数。例如,虽然一些调查从整体角度考虑了天线的带宽和效率,或针对小型化或可穿戴天线等小众应用的特定天线设计 [8], [10],但尚未对某些天线参数对功率接收和转换效率的影响进行详细分析。 58 本综述回顾了整流天线中的天线设计技术,旨在区分 RFEH 和 WPT 特定的天线设计挑战与通信的标准天线设计。从两个角度比较天线,即端到端阻抗匹配和辐射特性,每个角度都进行比较。
引言甲状腺癌是最普遍的内分泌恶性肿瘤,每年造成40,000多人死亡(1)。大多数甲状腺癌被认为是源自卵泡上皮细胞的病理学,包括乳头状甲状腺癌(PTC)和变性甲状腺癌(ATC)。尽管PTC和ATC都具有共同的起源,但它们具有两极分化的临床结果。PTC占所有甲状腺癌的近80%,具有良好的预后,特定于10年的疾病生存率超过90%(2)。 但是,ATC被广泛认为是最致命的癌症之一,中位存活仅为6至8个月(3),ATC表现出对大多数常规疗法的抗性(4)。 免疫疗法,例如免疫检查点抑制剂(ICIS),是一种抗癌治疗方法,可调节患者免疫细胞以治疗多种实体瘤(5)。 最近,临床试验还应用了ICIS,用于治疗 - 饮食甲状腺癌(包括ATC和晚期PTC)(6-8)。 尽管ICI治疗可能是侵袭性甲状腺癌患者的一种有前途的治疗方法,但已经显示出不同类型的甲状腺癌的明显表现,总体反应率(ORR)少于30%。 值得注意的是,ATC对抗编程的细胞死亡1/prom-Grammed细胞死亡配体1(抗PD-1/PD-L1)免疫疗法的反应更大,而晚期PTC似乎显示出较差的缓解率(9)。 单细胞RNA测序(SCRNA-SEQ)的最新进展为癌症细胞分辨率的转录特征提供了新的方法。PTC占所有甲状腺癌的近80%,具有良好的预后,特定于10年的疾病生存率超过90%(2)。但是,ATC被广泛认为是最致命的癌症之一,中位存活仅为6至8个月(3),ATC表现出对大多数常规疗法的抗性(4)。免疫疗法,例如免疫检查点抑制剂(ICIS),是一种抗癌治疗方法,可调节患者免疫细胞以治疗多种实体瘤(5)。最近,临床试验还应用了ICIS,用于治疗 - 饮食甲状腺癌(包括ATC和晚期PTC)(6-8)。尽管ICI治疗可能是侵袭性甲状腺癌患者的一种有前途的治疗方法,但已经显示出不同类型的甲状腺癌的明显表现,总体反应率(ORR)少于30%。值得注意的是,ATC对抗编程的细胞死亡1/prom-Grammed细胞死亡配体1(抗PD-1/PD-L1)免疫疗法的反应更大,而晚期PTC似乎显示出较差的缓解率(9)。单细胞RNA测序(SCRNA-SEQ)的最新进展为癌症细胞分辨率的转录特征提供了新的方法。然而,免疫疗法对ATC的可能机制比PTC更有效,并且进一步增强这种功效的方法尚不清楚,这两者都是将来要探索的重要方向。SCRNA-SEQ还被认为是识别候选精确医学治疗的人(例如免疫疗法)的一个有前途的途径(10)。在我们的研究中,SCRNA-SEQ数据包含2166666个细胞的PTC
摘要 — 能够通过天线从环境中收集射频能量并将其转换为直流能量以输送给负载的系统称为整流天线。整流电路是整流天线的重要组成部分,由于它采用了在极低功率水平下工作的非线性装置,因此其建模非常困难。此外,系统中还存在一些损耗。因此,设计高效整流器是一项巨大的挑战。在这项工作中,使用遗传算法优化了几种整流器拓扑,以实现最高效率和输出电压。还分析了变量对这些整流器输出的影响。所研究的拓扑针对 -15 dBm 输入功率和 2.45 GHz 工作频率进行了优化,以符合最适合能量收集的频段。在这些条件下,单二极管系列拓扑表现出最佳性能。当输入功率为 -15 dBm 时,其输出电压为 402 mV,效率为 51.3%。在该功率水平下,实现的效率高于文献中所述的效率。
能量整流方面的先驱研究已经表明,在没有温度偏差的情况下,能量通量也可以产生[1–13]。这些原理可以用于构建纳米级能量整流器[6]。从理论角度来看,能量传输通常与声子有关,但与单个粒子相比,这些集体激发更难操控[6, 14]。先前的研究已经利用了非线性相互作用[4]、非热浴[2]、绝热调制的几何相[5]或量子弗洛凯系统[15]提供的机会。通过结合宇称破缺超材料和非平衡强迫,我们最近的研究[16]发现了新的整流原理,其表现为网络系统中站点之间的定向能量流。与之前许多侧重于两个终端之间传输的研究不同,这些终端直接连接 [4] 或通过不对称线段 [2–4] 连接,我们的设置将所有节点及其连接放在平等的地位 [11–13],从而能够将整流研究扩展到具有复杂拓扑和几何形状的网络。基于我们最近的工作 [16],我们在这里研究增加时间周期调制的影响。我们的模型系统是一类弹簧质量网络,其中每个质量都受到时间调制的洛伦兹力 [17, 18] 并浸入活性浴中 [19]。通过数值计算,我们表明时间调制系统能够整流节点和浴之间的能量通量。换句话说,尽管没有温度偏差,我们的模型也可以充当多体能量泵。相比之下,我们之前的未调制系统 [16] 支持站点之间的净能量传输,但不支持站点和浴之间的净能量传输。因此,调制扩展了操纵复杂网络中能量传输的工具箱。我们通过开发一个分析框架来获取数值结果,以了解时间周期调制下复杂网络中的能量整流。