计算机中经常使用的电源单元是 SMPS(开关电源)。SMPS 提供 +12、-12、+5、-5 和 3.* DC 电压供操作使用。使用 SMPS 时,可在很宽的输入交流电压范围内产生不间断输出。SMPS 使电源单元紧凑、坚固且可靠。SMPS 将切换,直到在打开 CPU 时从计算机主板获得负回路。首先,SMPS 将输入交流电压转换为相应的直流电压,然后以非常高的频率施加到开关电路。该高频(AC)被馈送到具有不同胶带的降压变压器,以获得运行计算机所需的各种电压。然后对这些交流电压进行整流和滤波。最后,我们得到不同级别的纯直流电压。电源是主板的主电源,然后是风扇的电流主板,smps 线的名称硬线的进程和 SMPS 以及进程风扇的电源管理和其他电源设备
图1用迷你尖端卷积神经网络和相关归因方法进行性检测。首先,xðÞ节X段是交叉相关的吗?ðÞ,有16个学识渊博的时空内核(K I)的维度与脑电图的短窗口相似(图2中描述的实际核)。由于内核具有与数据相同数量的通道,因此它们仅沿时间轴而不是跨通道滑动。16个相关曲线被整流(Relu激活),并分为40个重叠的窗口。接下来,平均将窗户的最大值(M ij)进行。在最后一层中,从这16个平均值中预测了性别yðÞ。事后,网络参数用于归因于每个eeg通道和录音中的时间点的相关性r(紫色中指示的路径)。最终分类器层的重量(W I)的符号表示与第一层( /emale /Red and + / + /男性 /蓝色)的每个内核相对应的性别。
第一单元电子设备(10 L)先进电子设备:半导体肖特基二极管简介、半导体二极管、齐纳二极管、隧道二极管及其应用、双极型晶体管及其操作和特性、偏置和稳定、晶体管混合模型、使用 h 参数分析晶体管放大器电路、结型场效应晶体管的特性、JFET 的偏置、金属氧化物半导体 JFET 的概念和应用、光电二极管、发光二极管和太阳能电池、电源(包括整流和滤波电路)和调节器。第 2 单元反馈放大器和振荡器(8 L)放大器的分类、反馈的概念、负反馈和正反馈的一般特性、振荡器原理、巴克豪森标准、科尔皮特和哈特利振荡器、RC 振荡器、温桥振荡器、RC 相移振荡器、多谐振荡器、非稳态、单稳态和双稳态多谐振荡器、方波、三角波发生器和脉冲发生器
定义....................................................................................GG.GG*GGGG-G“ 环境光.......................................................................................GG“=G““ 交流电....................................................................................-....s.QGGG 背光.......................................................................................................-GGG“w 分类....................................................................................................G.GGGGGGG 线圈喷射....................................................................................G....GGG“ GGG ” GGG 调节水.......................................................................................GGGGGGG 连续方法....................................................................1....G....G.GGG 承包机构.... . . . . . . . . . . . . GG . G 缺陷. . . . . . . . . . . . . . * G “- w “ “ 磁通泄漏. . . . . . . . . . . . . GGG “ “ 9 GG 拉波整流交流电. . . . . . 高斯. . . . . . . . . . . . so G “ “ “ '“ - “ 半波整流交流电. . . . . . . . . . . . . GGGGGGGG 指示. . . . . . . G . . . . . GG “ s G “ - 指示,虚假. . . . . . . . . w “ “ G “ G 指示,相关 . . . . . . . . . . . s G “ “ 指示,不相关 . . . . . . . . . . . . GG 磁通量 . . . . . . . . . . . . . GG * GGG 磁化 . . . . . . . . . . . . . GGG “ G “ 多向场 . . . . . . . . . . . s 磁导率 . . . . . . . . . . . G “ G “ * GGG 产品 . . . . . . . . . . . . . co . “= G “ “ G - 残留法 . . . . . . . . . . . . GGGG + GGG 悬浮液 . . . . . . . . . . . . . . . 0 c “ G “ GGG 切向施加场强 . . . . . . . . . . . . . 水破试验 . . . . . . . . . . . . . . . . 湿法 . . . . . . . . . . . . GG c GG 轭 . . . . . . . . . . . . . . . . G “ GG “ .
本研究的主要动机是调查 COVID-19 大流行,自该流行病首次出现在中国武汉以来,它就对全世界构成了重大威胁。预测 COVID-19 病例数对于预防和控制疫情至关重要。在本研究中,实施了一种基于整流线性单元技术的人工神经网络,利用从 2020 年 2 月 25 日确诊前两例病例之日起至 2020 年 7 月 10 日的 137 天 COVID-19 病例先前数据,预测巴基斯坦 COVID-19 的死亡、康复和确诊病例数。将收集的数据分为训练数据和测试数据,用于测试所提技术的效率。此外,在对整个可用数据进行模型训练时,所提技术还对未来 7 天做出了未来预测。
对于非线性光学材料作为有效的宽带Terahertz(THZ)波发电机,在THZ频率范围内具有较大透明度的低吸收器非常重要。在这项研究中,我们报告了有效的有机THZ波发电机,2-(4-羟基霉菌 - 霉菌)-1-甲基喹啉4-溴苯磺酸盐(OHQ-BBS)单晶。有趣的是,OHQ-BBS晶体在THZ频率区域的无分子振动模式范围从1.7到5.1 THz,吸收系数<20 mm-1。通过光学整流使用1300 nm波长的130 FS泵脉冲,OHQ-BBS晶体在1.2-5.5 THz的范围内生成极宽,无凹坑的THZ波。此外,还达到了从广泛使用的Znte无机晶体产生的场高20倍的THZ电场。因此,OHQ-BBS单晶是多个THZ光子应用的高度有希望的材料。
摘要:本文介绍了一种使用低成本溶液处理技术制造有机基器件的方法。在环境条件下,在 ITO 涂层玻璃基板上制造了一种氯取代的二维共轭聚合物 PBDB-T-2Cl 和 PC 71 BM 支持的纳米胶囊水合五氧化二钒 (HVO) 的混合异质结作为空穴传输层 (HTL) 光电探测器。该器件形成了一个优异的有机结二极管,整流比良好,约为 200。该器件在光电导模式(反向偏置)和绿光波长的零偏置下还表现出优异的光电检测特性。本文报道了非常高的响应度 ~6500 mA/W 和 1400% 的高外部量子效率 (EQE)。所提出的有机光电探测器分别表现出优异的响应和恢复时间 ~30 和 ~40 毫秒。
valleytronic,光学,热,磁性和铁电性能在新型异质结构和设备中。它们的弱层间耦合可以通过机械堆叠2D材料来相对简单地制造垂直侵蚀。另一方面,侧面异质结构(LHSS)的层次是现代金属 - 氧化物 - 氧化物 - 氧化导向器磁场晶体效应的基于微电极的基本结构,由于需要更多的复杂生长和兴奋剂技术,因此受到了探索的较少。受到可能从2D LHSS出现的潜在杰出性能和多功能调整自由的鼓励,在该领域进行了多项实验和理论研究。[1] The earliest experimentally realized 2D LHSs were those between graphene and hexagonal boron nitride (hBN) [2–6] grown by chemical vapor depo- sition (CVD), from which prototype field effect transistors (FETs) were demonstrated [2–5] Shortly later, a series of transition metal dichalcogenide (TMDC) mono layer (ML)通过一步或两步的CVD方法制备LHSS,包括MOS 2,MOSE 2,WS 2和WSE 2的组合。[7-12]所有这些TMDC LHSS都显示二极管样电流的整流效应。[26]同时,制造了具有高性能的原型设备,包括光电二极管和互补的金属 - 氧化物 - 半导体晶体管逆变器,[7,10–12]通过控制良好的气体流量切换技术或光刻辅助辅助阴离子的替代品,TMDC LHS的脱位量很清晰。 LHSS仅由一种材料组成,但具有不同的厚度,[16,17]或介电环境[18]在其界面上,产生了电子带隙,整流和光伏效应的修饰。将材料与不同空间对称性组合的2D LHS的其他形式,例如石墨烯-TMDC LHSS [19-22] HBN-TMDC LHSS,[19]石墨烯纳米替伯型LHSS与不同的兴奋剂[23]或宽度[23]或宽度[24] [24]单钙化剂 - 二甲基二苯二苯lhss [26]是通过各种增强的CVD方法创建的,例如机械 - 脱落的辅助CVD,[19]种子促进的CVD,[20]由等离子体蚀刻定义的模板生长,由等离子体蚀刻[21] [21] [21]和热层转化化学构图。
摘要:本文提出了一种基于第二代电压传送器 (VCII) 的半波整流器电路架构方案。该方案可产生电压信号形式的反相和非反相输出。所提出的电路是文献中介绍的第一种使用 VCII 的半波整流器架构。它由一个 VCII、两个二极管和一个接地电阻组成。输入信号为电流形式,整流输出电压信号在同一 VCII 的低阻抗 Z 端口提供。因此,产生的输出信号可直接使用,无需添加额外的电压缓冲器。此外,电路增益由接地电阻值设置,可以进行调整。所提出的电路采用简单的晶体管级结构,仅使用 21 个晶体管。本文介绍并解释了整流器的架构以及可能的 VCII 拓扑。还给出了初步的模拟结果,突出了其功能。它的简单性和多功能性使其适用于传感器接口和传感器网络的处理电路,其中模拟处理部分的低功耗至关重要。
近年来,表面声波(锯)已成为一种新型技术,用于在凝结物质系统中产生准粒子传输和带调节。锯子通过压电和应变场与相邻材料相互作用,沿波传播的方向拖动载体。大多数关于大声效应效应的研究都集中在载体的集体方向运动上,该方向产生了稳定的电势差,而动态空间电荷调制的振荡成分对于探测仍然具有挑战性。在这项工作中,我们报告了石墨烯中振荡大声效应的连贯检测。这是通过在跨胶质传感器发出的电磁波的时空电荷振荡的相干整流来实现的。我们系统地研究了整流信号的频率和门依赖性,并定量探测由锯驱动的载体重新分布动力学。观察振荡的大声电效应可直接访问通过传输实验引起的锯引起的动态空间电荷调制。