内部变速箱通常位于低压和高压压缩机之间。在现代双轴设计中,内部变速箱从高压轴 [4] (p. 143) 获取动力。即两个同心轴中较外侧和较短的轴。但驱动器也可以从每个发动机轴获取动力,以便将负载分配到两个轴上。在这种情况下,飞机系统可能由低压轴 [11] (p. 67) 驱动。高压轴比低压轴旋转得更快,这也可能影响选择在何处连接哪种附件。驱动轴穿过发动机的空气管道(见图 1)。为了限制驱动轴和包围它的空心整流罩对发动机气流的干扰,轴设计得尽可能小,因此可以高速运转 [11]。附件变速箱 (AGB) 通常布置为弯曲的壳体,以便各种附件安装在靠近发动机的位置。每个附件均配有单独的安装垫(图 2)。壳体内的驱动由一列正齿轮提供。它们之间通常使用惰轮,以增加附件之间的间距。附件按速度降序排列在驱动轴入口的两侧。
每个申请人必须编写经批准的发动机安装和操作说明,并在颁发型号合格证之前提交给主管机关,并在发动机交付时提交给所有者。该说明必须至少包括下列内容: (a) 安装说明。 (1) 发动机安装附件的位置、将发动机安装到飞机上的方法,以及安装附件和相关结构的最大允许载荷。 (2) 与附件、管道、电线、电缆、导管和整流罩连接的发动机连接的位置和说明。 (3) 发动机的外形图,包括总体尺寸。 (4) 与飞机和飞机设备(包括螺旋桨,如适用)的物理和功能接口的定义。 (5) 如果发动机系统依赖于不属于发动机型号设计的部件,则发动机型号合格审定所依据的那些部件的接口条件和可靠性要求必须在发动机安装说明中直接指定或通过引用适当文件指定。 (6) 还必须列明控制发动机所需仪器的清单,包括控制发动机运行所需的此类仪器的总体精度限值和瞬态响应,以便评估安装的仪器的适用性。 (b) 操作说明书
60 多年来,太空活动为世界人民带来了巨大的利益,从汽车上的卫星导航到卫星通信/广播,再到天气预报、环境监测等等,不胜枚举。实际上,有数百种日常使用和应用的设备都依赖于卫星技术。当提供这些服务的卫星达到使用寿命并停止工作时,它们通常会留在轨道上。2018 年,仍有近 3,000 颗报废卫星在轨道上,更不用说用于将卫星送入轨道的火箭的最后阶段,以及整流罩和其他硬件。除了完整的物体外,还有数百万个碎片,这些碎片是由这些物体的退化产生的,从保护材料碎片到爆炸和碰撞产生的弹片 (1)。总共有超过 8,000 吨的碎片目前正在地球轨道上运行,对正在运行的卫星构成威胁。我们还没有触发被称为凯斯勒综合征(以首次研究这种现象的科学家命名 ( 2 ) )的噩梦场景,即碰撞产生的碎片撞击其他物体时产生爆炸,产生新的碎片,这些碎片会撞击其他物体。这将导致呈指数增长的级联效应,并迅速
20 世纪 30 年代末,已有多种飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或用于机轮制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,自动驾驶仪启动时就可以设定飞行控制面位置(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员为主要飞行控制装置产生的力量水平变得至关重要。引入了与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
20 世纪 30 年代末,已有多种飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或用于机轮制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,自动驾驶仪启动时就可以设定飞行控制面位置(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员为主要飞行控制装置产生的力量水平变得至关重要。引入了与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
20 世纪 30 年代末,已有数架飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或轮毂制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,当自动驾驶仪启动时,就可以由自动驾驶仪施加飞行控制面位置设定点(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员对主要飞行控制装置产生的力变得至关重要。引入与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
20 世纪 30 年代末,已有多种飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或机轮制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,自动驾驶仪启动时就可以设定飞行控制面位置(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员为主要飞行控制装置产生的力量水平的需求迅速变得至关重要。引入与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
兰利纪念航空实验室成立于 1917 年,是美国第一家根据国家航空咨询委员会 (NACA) 章程建立的民用航空研究实验室。这个高产的实验室的主要任务是发现和解决飞行问题,它利用大量风洞、实验室设备和飞行研究飞机来构思和完善新的航空概念,并为飞机设计中的关键技术学科提供数据库和设计方法。第二次世界大战 (WWII) 之前,兰利对机翼、飞机结构、发动机整流罩和冷却、阵风减缓和飞行品质等不同主题的研究在民用航空界广泛传播,该技术在民用飞机上的应用也很常见。然而,在二战期间,兰利的设施和人员必然专注于支持国家的军事努力。二战后,兰利的航空研究受到高速飞行挑战以及高速飞机配置在相对低速(例如起飞和降落时)运行时出现的相关问题的刺激。兰利当时的大部分研究最终对民用和军用航空业都有用。随着 1958 年新成立的国家航空航天局 (NASA) 的出现,兰利
20 世纪 30 年代末,已有多种飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或用于机轮制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,自动驾驶仪启动时就可以设定飞行控制面位置(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员为主要飞行控制装置产生的力量水平变得至关重要。引入了与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
由来自学术界和工业界的欧洲、俄罗斯和加拿大合作伙伴拥有。该框架包括多个学科,例如空气动力学、结构、推进、飞行力学、任务模拟、成本和排放。AGILE 项目的新颖之处之一是将初步机载系统设计学科整合到 MDO 框架中。机载系统学科确实深受其他设计学科的影响。反过来,机载系统学科影响着整体飞机设计 (OAD) 的主要结果。在这方面,值得注意的是,机载系统质量占飞机最大起飞质量 (MTOM) 的约 30% ([11], [12])。对飞机层面产生重大影响的是二次动力,即从发动机获取的用于供应机载系统的电力、液压和气动动力。一般而言,产生二次动力消耗所燃烧的燃料占总任务燃料的 5%。此外,机载系统设计学科会影响空气动力学(例如由于襟翼整流罩)、飞机几何形状、飞行品质、可靠性、可用性、可维护性和安全性 (RAMS) 考虑因素、成本。因此,从设计过程的最初阶段开始,在 OAD 环境中执行更详细的机载系统设计非常重要 [13]。为此,文献中提出了几个 MDO 框架来解决