如图2所示,骨骼重塑,骨骼在成年骨骼中不断重塑,这是通过骨质化的破骨细胞和形成骨成骨细胞的协调和顺序作用。这些细胞起作用可修复微塑料并适应骨骼结构满足机械和代谢需求。骨细胞>占所有骨细胞的95%,调节骨骼重塑。成骨细胞源自间充质干细胞(MSC),专门产生细胞外骨基质,包括I型胶原蛋白和非胶原蛋白,包括骨环钙蛋白,骨tec蛋白,骨修蛋白和骨4。随后通过沉积羟基磷灰石的沉积将骨基质矿化和僵硬。人体钙的约95%掺入骨基质中。破骨细胞源自巨型和单核细胞谱系的造血干细胞(HSC)。从前体细胞向活化的多核细胞的分化至关重要地取决于作用于整骨蛋白等级的核因子kappa b(rank)配体的受体激活剂(rankL),以及巨噬细胞刺激性刺激因子(M-CSF)的允许水平。RANKL主要由成骨细胞谱系细胞(MSC,成骨细胞和成骨细胞)和淋巴细胞产生。成熟的骨 - 分辨破骨细胞是大型多核细胞。使用密封区在骨表面附着并用褶皱的边框增强其表面,成熟的破骨细胞分泌盐酸(HCL)创建一种酸性微环境,其中诸如calterepsin k之类的酶(例如canterpsin k),降低了I型I型collagen collagen,是最活跃的(21,73,73,85)。
网站 http://www.pacodeandbulletin.gov/Display/pacode?file=/secure/pacode/data/028/chapter23/s23.85.html&searchunitkeywords=im munization&origQuery=immunization&operator=OR&title=null 要获得医疗豁免,学生必须提交由医生、整骨师、执业护士或助理医师签署的声明,说明具体医疗禁忌症。声明必须说明每种必需疫苗为何在医学上是禁忌的。要获得宗教豁免,学生必须提交由神职人员签署的声明或由学生本人(如果学生未满 18 岁,则由学生的父母或监护人签署)签署的声明,描述学生的宗教信仰以及这些信仰为何禁止每种必需疫苗接种。通过签署此“不接种疫苗决定”,学生和家长(如适用)承认他们已被告知,如果学生感染可以通过适当接种疫苗预防的疾病,学生可能会将自己和他人置于严重疾病的风险中。学生和家长(如适用)进一步承认,学生可能会被要求离开校园,直到宾夕法尼亚州卫生部和哈弗福德学院确定学生可以返回校园。有关哈弗福德学院要求的疫苗接种以及不接种疫苗决定相关风险的更多信息,请访问:美国大学健康协会:免疫建议; https://www.acha.org/documents/resources/guidelines/ACHA_Immunization_Recommendations_Oct2018.pdf 36944579.1 2020 年 5 月 14 日 学生签名:_______________________________________ 日期:______________ 家长签名(如果学生未满 18 岁):______________________________________ 日期:______________ 随附 MD、DO、NP 或 PA 的信件: 是 否 日期:______________ 随附神职人员的信件或声明: 是 否 日期:______________ 2023 年 4 月 13 日
多种疾病是一个不断上升的公共卫生挑战,对健康管理和政策产生了重要影响。最常见的多发性模式是心脏代谢和整骨疾病的结合,这是2型糖尿病(T2DM)和骨关节炎的高度普遍共发生所证明的。T2DM与膝关节骨关节炎(KOA)之间的关系引起了人们的关注,因为重叠的患病率和共同的危险因素(例如肥胖症和高级衰老)。研究表明T2DM和KOA之间存在显着关联。一项包括1型DM(T1DM)和T2DM种群的研究观察到KOA与T2DM的关联显着更高,与没有T2DM相比,患有T2DM的个体具有T2DM的个体的可能性比值比(OR)两倍多。有趣的是,这种关联在非肥胖个体中更强,强调了糖尿病的潜在影响超出了肥胖的影响(2)。还有其他研究共同强调了T2DM和KOA之间的显着相关性,这表明将这些条件联系起来的机制超出了肥胖症(3,4)的简单风险因素。锻炼被认为是T2DM治疗的基石,以及饮食和可靠的效率药物(5,6)。尽管锻炼在改善血糖控制,血脂纤维纤维和该组的其他结果方面的有效性已得到充分证明(7-9),但对不同类型运动的相对影响的确定性较小。针对KOA的人,有氧运动传统上是研究最多的运动(8),并招募了大量的肌肉,包括步行,骑自行车,游泳和慢跑。对于KOA,文献中发现的最常见的有氧土地运动的锻炼是固定自行车(10),因为它是一种低体重轴承和非影响力的体育活动形式。已经表明,固定的骑自行车在10到12周内进行的固定循环导致膝盖疼痛和僵硬的减轻,并提高了KOA患者的步行速度和距离(11,12)。由骑自行车引起的康复的积极受益可能归因于腿部肌肉功率输出和动态运动范围的改善(13)。
执行摘要卫生资源和服务管理局(HRSA),卫生劳动力局(BHW),卫生职业和财务支持部正在接受2016财年(FY)2016年弱势学生奖学金(SDS)计划。SDS计划通过向符合条件的卫生专业学校提供奖励,以向有经济需求的弱势背景的学生(包括种族和族裔少数民族的成员)提供奖学金,从而增加了卫生专业和护理劳动力的多样性。SDS计划的目的是增加:1)从事初级保健的毕业生人数,2)在不利背景的招生和保留全日制学生,包括种族和少数民族群体的成员,以及3)毕业生人数,在医学贫困社区(MUC)(MUCS)。机构必须为他们寻求资金的每个卫生专业纪律提交单独的申请。机构不得提交多个学科或计划的申请。一个机构可以提交多个申请,但将获得不超过三个卫生专业的资金。[请参阅第三节。此资助机会公告(FOA)的资格信息以获取完整的资格信息。]资金机会标题:弱势学生的奖学金(SDS)资金机会编号:HRSA-16-069申请的截止日期:2016年1月25日预计的年度可用资金:43,687,000美元的估计数量和类型43,687,000美元,奖励的奖励数量和类型奖励,奖励奖励:估计奖励额为99美元,最高$ 650票数:7月30日,每年7月1日,每年7月1日,每年6月1日,比赛,竞争:650,000个奖励:60,000次奖励:每年7月1日,比赛,匹配:每年一次:年)符合条件的申请人:合格的申请人是获得认可的医学院,整骨医学,牙科,护理(如《 PHS法》第801条所定义的),药学,足病医学,验光医学,兽医医学,公共卫生,脊椎治疗,脊椎治疗,呼吸疾病,盟军健康,为培训培训的培训方案或在行为健康方面的培训或培训方案,以实现行为和心理健康的计划。
références1。Mizushima N,Levine B,Cuervo AM,Klionsky DJ。自噬通过细胞自我消化与疾病作斗争。自然。2008年2月28日; 451(7182):1069–75。 2。 Mizushima N,Komatsu M.自噬:细胞和组织的翻新。 单元格。 2011年11月11日; 147(4):728–41。 3。 Pierrefite-Carle V,Santucci-Darmanin S,Breuil V,Camuzard O,Carle GF。 骨骼中的自噬:保持平衡。 老化Res Rev. 2015年11月; 24(pt b):206-17。 4。 Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。2008年2月28日; 451(7182):1069–75。2。Mizushima N,Komatsu M.自噬:细胞和组织的翻新。单元格。2011年11月11日; 147(4):728–41。3。Pierrefite-Carle V,Santucci-Darmanin S,Breuil V,Camuzard O,Carle GF。骨骼中的自噬:保持平衡。老化Res Rev.2015年11月; 24(pt b):206-17。 4。 Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。2015年11月; 24(pt b):206-17。4。Liu F,Fang F,Yuan H等。 通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。 J骨矿工销售J Am Soc Bone Miner Res。 2013年11月; 28(11):2414–30。 5。 Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Liu F,Fang F,Yuan H等。通过抑制成骨细胞末端分化,FIP200缺失对自噬的抑制导致小鼠的骨质减少。J骨矿工销售J Am Soc Bone Miner Res。2013年11月; 28(11):2414–30。5。Nollet M,Santucci-Darmanin S,Breuil V等。 成骨细胞中的自噬参与矿化和骨稳态。 自噬。 2014年12月18日; 10(11):1965–77。 6。 Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Nollet M,Santucci-Darmanin S,Breuil V等。成骨细胞中的自噬参与矿化和骨稳态。自噬。2014年12月18日; 10(11):1965–77。6。Zhao Y,Chen G,Zhang W等。 自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。 J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Zhao Y,Chen G,Zhang W等。自噬通过HIF-1α/BNIP3信号通路调节缺氧诱导的破骨细胞生成。J细胞生理。 2012年2月; 227(2):639–48。 7。 DeSelm CJ,Miller BC,Zou W等。 自噬蛋白调节整骨骨吸收的分泌成分。 DEV单元格。 2011年11月15日; 21(5):966–74。 8。 Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。J细胞生理。2012年2月; 227(2):639–48。7。DeSelm CJ,Miller BC,Zou W等。自噬蛋白调节整骨骨吸收的分泌成分。DEV单元格。2011年11月15日; 21(5):966–74。8。Sànchez-Riera L,Wilson N,Kamalaraj N等。 骨质疏松和脆弱性骨折。 最佳实践临床风湿性。 9。Sànchez-Riera L,Wilson N,Kamalaraj N等。骨质疏松和脆弱性骨折。最佳实践临床风湿性。9。2010年12月; 24(6):793–810。Almeida M,O'Brien CA。 骨骼老化的基本生物学:应力反应途径的作用。 J Gerontol A Biol Sci Med Sci。 2013年10月; 68(10):1197–208。 10。 Manolagas SC,Parfitt AM。 旧的对骨骼意味着什么。 趋势内分泌代替tem。 2010 Jun; 21(6):369–74。 11。 Gavali S,Gupta MK,Daswani B,Wani MR,Sirdeshmukh R,Khatkhatay Mi。 雌激素通过促进自噬来增强人类成骨细胞的存活和功能。 Biochim Biophys acta mol Cell Res。 2019年9月; 1866(9):1498–507。 12。 Cheng L,Zhu Y,Ke D,XieD。雌激素活化的自噬对雌激素的抗αsteocolasogenation具有负面影响。 细胞增殖[Internet]。 2020年3月11日[引用2020年10月12日]; 53(4)。 可从:https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7162800/ 13。 pan F,Liu X-G,Guo Y-F等。 自助途径的调节可能会影响中国的地位变化:老年人的证据。 j hum Genet。 2010年7月; 55(7):441–7。 14。 Zhang L,Guo Y-F,Liu Y-Z等。 基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。 J骨矿工销售J Am Soc Bone Miner Res。 2010年7月; 25(7):1572–80。 15。 Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Almeida M,O'Brien CA。骨骼老化的基本生物学:应力反应途径的作用。J Gerontol A Biol Sci Med Sci。2013年10月; 68(10):1197–208。10。Manolagas SC,Parfitt AM。旧的对骨骼意味着什么。趋势内分泌代替tem。2010 Jun; 21(6):369–74。11。Gavali S,Gupta MK,Daswani B,Wani MR,Sirdeshmukh R,Khatkhatay Mi。雌激素通过促进自噬来增强人类成骨细胞的存活和功能。Biochim Biophys acta mol Cell Res。2019年9月; 1866(9):1498–507。12。Cheng L,Zhu Y,Ke D,XieD。雌激素活化的自噬对雌激素的抗αsteocolasogenation具有负面影响。细胞增殖[Internet]。2020年3月11日[引用2020年10月12日]; 53(4)。可从:https://www.ncbi.nlm.nih.gov/pmc/articles/pmc7162800/ 13。pan F,Liu X-G,Guo Y-F等。自助途径的调节可能会影响中国的地位变化:老年人的证据。j hum Genet。2010年7月; 55(7):441–7。14。Zhang L,Guo Y-F,Liu Y-Z等。 基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。 J骨矿工销售J Am Soc Bone Miner Res。 2010年7月; 25(7):1572–80。 15。 Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Zhang L,Guo Y-F,Liu Y-Z等。基于途径的全基因组关联分析确定了自噬途径对超前半径BMD的重要性。J骨矿工销售J Am Soc Bone Miner Res。2010年7月; 25(7):1572–80。15。Chen K,Yang Y-H,Jiang S-D,Jiang L-S。 随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。 组织化学细胞生物。 16。Chen K,Yang Y-H,Jiang S-D,Jiang L-S。随着衰老的衰老,骨细胞自噬的活性降低可能导致老年人群的骨质流失。组织化学细胞生物。16。2014年9月; 142(3):285–95。Camuzard O,Santucci-Darmanin S,Breuil V等。成骨细胞谱系中的性别特异性自噬调制:抵消女性骨质流失的关键功能。oncotarget。2016年10月11日; 7(41):66416–28。17。Yang Y,Zheng X,Li B,Jiang S,Jiang L.卵巢切除大鼠中骨细胞自噬的活性增加,及其与氧化应激状态和骨骼丧失的相关性。Biochem Biophys Res Commun。2014年8月15日; 451(1):86–92。18。Luo D,Ren H,Li T,Lian K,LinD。雷帕霉素通过激活骨细胞自噬来降低老年骨质疏松症的严重程度。骨质骨int j stuph Result coop eur发现了美国的骨质骨骨骨质骨。2016年3月; 27(3):1093–101。19。yuan Y,Fang Y,Zhu L等。 造血自噬的恶化与骨质疏松症有关。 老化细胞。 2020; 19(5):E13114。 20。 Kneissel M,Luong-Nguyen N-H,Baptist M等。 依维莫司通过破骨细胞抑制取消骨质流失,骨吸收和组织蛋白酶K的表达。 骨头。 2004年11月; 35(5):1144–56。 21。 Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。yuan Y,Fang Y,Zhu L等。造血自噬的恶化与骨质疏松症有关。老化细胞。2020; 19(5):E13114。20。Kneissel M,Luong-Nguyen N-H,Baptist M等。依维莫司通过破骨细胞抑制取消骨质流失,骨吸收和组织蛋白酶K的表达。骨头。2004年11月; 35(5):1144–56。 21。 Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。2004年11月; 35(5):1144–56。21。Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。 糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。 内分泌学。 2006年12月; 147(12):5592–9。 22。 Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。Jia D,O'Brien CA,Stewart SA,Manolagas SC,Weinstein RS。糖皮质激素直接作用于破骨细胞,以增加其寿命并降低骨密度。内分泌学。2006年12月; 147(12):5592–9。22。Kim H-J,Zhao H,Kitaura H等。 糖皮质激素通过破骨细胞抑制骨形成。 J Clin Invest。 2006年8月; 116(8):2152–60。 23。 24。Kim H-J,Zhao H,Kitaura H等。糖皮质激素通过破骨细胞抑制骨形成。J Clin Invest。2006年8月; 116(8):2152–60。 23。 24。2006年8月; 116(8):2152–60。23。24。Lin N-Y,Chen C-W,Kagwiria R等。 自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。 Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。Lin N-Y,Chen C-W,Kagwiria R等。自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。 Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。自噬的灭活可改善糖皮质激素诱导的卵巢切除术引起的骨质损失。Ann Rheum Dis。 2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。Ann Rheum Dis。2016; 75(6):1203–10。 fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。 Calcif Tissue int。 2020 Jul; 107(1):60–71。2016; 75(6):1203–10。fu L,Wu W,Sun X,ZhangP。糖皮质激素通过PI3K/AKT/MTOR信号通路增强了破骨细胞自噬。Calcif Tissue int。2020 Jul; 107(1):60–71。
骨质骨术是一种罕见的代谢骨疾病,其特征是骨矿物质密度异常增加,导致骨髓衰竭,压缩神经病和骨骼畸形(1)。根据遗传模式,可以将其分为常染色体显性骨质术(ADO),常染色体隐性骨质骨术(ARO)和X连接的骨质疏松症(XLO)(1-3)。ADO是骨质骨术的最常见形式,估计发病率为1:20,000(4)。早期,ADO被认为包括两种表型,ADO I(OMIM 607634)和ADO II(OMIM 166600)(2)。ADO I的特征是LDL受体相关蛋白5(LRP5)基因的突变,该基因导致高骨量,但不会导致骨折(5)。ADO II是由整骨骨吸收受损引起的,这些骨吸收通常是由于氯化物通道7(CLCN7)基因(6,7)中杂合的错义突变引起的。clcn7是一种基因,不仅可以引起严重的隐性骨质肌膜病形式,即ARO,而且还可以根据Clcn7突变的类型(8)。此外,由CLCN7突变引起的ADO II占ADO的70%,这是最常见的骨质疏松症类型(9)。因此,这项研究的重点是由CLCN7突变引起的骨质疏松症。CLCN7编码Cl- /H +交换转运蛋白7,也称为CLC-7,通常将其定位于溶酶体区室和骨 - 分解骨细胞的Ruf膜膜(10)。CLCN7突变导致骨质细胞异常无法分泌酸,因此无法溶解骨骼,从而导致骨质疏松症。这种疾病表现出异质性,表型表现出各种程度的严重程度,从无症状到威胁生命(11-13)。在没有基因检测或典型的放射线摄影发现的情况下,乳酸脱氢酶(LDH),天冬氨酸氨基转移酶(AST)和肌酸激酶BB同酶(CK-BB)的水平升高与Clcn7突变引起的骨化(14、15)有关。尽管如此,这些生物标志物的水平尚未证明与疾病的严重程度相关,而正常值不排除CLCN7基因中突变的存在(4)。因此,迫切需要找到更多的特定和敏感的生物标志物。有许多关于骨质造成症的遗传研究,但目前尚未发现CLCN7突变引起的骨质疏松症的血清代谢研究。通过阐明区分健康和疾病表型的特定特征,代谢组已成为理解生理和病理过程之间差异的基石,可能使我们可以搜索
英格兰的辅助医疗专业 (AHP) 包括以下所有学科:艺术治疗师、戏剧治疗师、音乐治疗师、足病医生/足病医生、营养师、职业治疗师、手术部从业者、斜视矫正师、整骨师、护理人员、物理治疗师、假肢师和矫形师、诊断放射技师、治疗放射技师、言语和语言治疗师。这 14 个辅助医疗专业合在一起构成了卫生和护理领域的第三大劳动力队伍。虽然这项战略是为英格兰的 AHP 劳动力制定的,但它认识到普遍的驱动因素、挑战、影响和共同原则。所有 14 个 AHP 协会都有研究战略政策和指导,作为其自身成员专业发展支持计划的关键要素。其他现有的区域和组织研究战略也已制定,专门包括辅助医疗专业。此外,一些 AHP 可以通过参与与其自身实践领域相关的多专业、跨部门和/或专业研究兴趣小组来获得研究和创新发展机会。然而,该战略直接解决了所有 AHP 都需要相关且适当差异化的支持和发展机会的问题,无论他们的学科、专业协会会员资格或就业环境如何。因此,这项新战略包含一个明确的集体国家参考声明,全面支持所有联合健康专业人员的研究和创新议程。它的独特之处在于表达了所有专业协会、专业研究支持计划以及学术教学和研究界的统一声音。这项工作旨在确定 AHP 研究和创新声誉、影响力和对服务的影响的转型变革的高级战略目标。这一质量改进议程涵盖了从概念验证、应用健康研究、实施科学研究到服务评估等各个领域的各种科学研究方法。采用“研究与创新”这一术语是为了全面涵盖所有有助于改善护理质量、有效性和安全性的方法。它还旨在跨越研究人员和从业者群体之间的历史鸿沟;因为未来的愿景是比以往任何时候都更有力地将双方各自的专业知识、经验和见解结合起来。这将加速将研究证据付诸实践的周期,以改善健康、福祉和护理结果,并推动以实践为主导的优先事项设定和未来研究与创新的真正共同设计。该战略完全补充和完善了独特的 AHP 质量改进议程,该议程已通过国家 AHP 网络推进。该战略的范围涵盖所有 AHP 劳动力社区,包括所有职业阶段、就业部门和工作角色。战略目标和目的与所有 AHP 从业者、教育工作者、研究人员、管理人员、政策领导者以及委托、资助、管理和支持 AHP 服务的所有主要利益相关者直接相关。
标准 – 医疗主任 1.1A 医疗主任必须是持牌医师,并且根据 NRC 或州监管机构的规定,是放射性同位素的授权用户。如果该机构进行核医学治疗,医疗主任也必须是这些程序的授权用户。1.1.1A 医疗主任所需的培训和经验 医疗主任必须满足以下标准中的至少一项: 1.1.1.1A 获得心脏病学委员会认证(或符合委员会资格,但完成培训后两年内)并完成至少四个月的核心脏病学正式培训计划 [ACC/ASNC COCATS 培训指南(2006 年修订版)中概述的 2 级]。此要求仅适用于 1995 年 7 月或之后开始心脏病学培训的心脏病专家。1.1.1.2 获得心脏病学委员会认证,且接受过相当于 2 级培训的培训,或至少有一年(全日制当量)的核心脏病学实践经验,并能独立解释至少 800 项核心脏病学研究。此要求仅适用于 1995 年 7 月之前开始心脏病学培训的心脏病专家。1.1.1.3 获得核心脏病学认证委员会 (CBNC) 的核心脏病学认证。1.1.1.4 获得核医学委员会认证(或符合委员会资格,但完成培训后两年内)。1.1.1.5 获得诊断放射学委员会认证(或符合委员会资格,但完成培训后两年内),并接受过至少四个月的核心脏病学培训。1.1.1.6A 委员会认证(或委员会合格但完成培训后两年内)诊断放射学,并具有核医学方面的特殊能力。1.1.1.7A 委员会认证(或委员会合格但完成培训后两年内)诊断放射学,并具有至少一年(全职当量)核心脏病学实践经验,能够独立解释至少 800 项核心脏病学研究。1.1.1.8A 委员会认证(或委员会合格但完成培训后两年内)诊断放射学,并接受至少四个月的核医学培训,能够解释至少 800 个核医学程序。1.1.1.9 获得美国医学专业委员会 (ABMS)、美国整骨疗法协会 (AOA)、加拿大皇家内科医师和外科医学院或魁北克医学院认可的任何其他相关医学专业的委员会认证(或委员会合格但完成培训后两年内),并且拥有至少一年(全职当量)核心脏病学/核医学/ PET 实践经验,能够独立解释至少 800 个核心脏病学/核医学和/或 PET 程序。
概述本文档适用于该地区的心脏紧急响应计划(CERP),使用设备要求和运动应急行动计划(AEAP(如果适用))中列出的自动外部除颤器(AED)。它是根据T.C.A.开发的49-2-122,标题68第140章第4部分和T.C.A. 68-6-201。 该文件是根据美国心脏协会制定的指南制定的。 所有使用AED,培训要求,计划审查以及CERP或AEAP(如果适用)事件审查的所有使用都将在田纳西州许可的监督医师的主持下。 定义AEAP(如果适用) - 运动紧急行动计划 - 在任何运动事件发生的紧急情况下,应遵循该计划。 不参加运动活动的学校不需要开发AEAP(如果适用)。 AED - 自动化外部除颤器,它是一种医疗设备,是一款心脏监护仪和除颤器,获得了美国食品药品监督管理局(USFDA)的预售批准。 它能够识别出或不存在心室纤颤或快速心动心动过速,并且能够在不进行干预的情况下确定是否应进行除颤,如果需要,应自动充电并要求将电气冲动到个人的心脏中。 CERP - 在所有学校和/或学校赞助的活动中突然心脏骤停的情况下,应遵循的心脏应急响应计划。 应将此列表固定在AED携带箱上。49-2-122,标题68第140章第4部分和T.C.A.68-6-201。该文件是根据美国心脏协会制定的指南制定的。所有使用AED,培训要求,计划审查以及CERP或AEAP(如果适用)事件审查的所有使用都将在田纳西州许可的监督医师的主持下。定义AEAP(如果适用) - 运动紧急行动计划 - 在任何运动事件发生的紧急情况下,应遵循该计划。不参加运动活动的学校不需要开发AEAP(如果适用)。AED - 自动化外部除颤器,它是一种医疗设备,是一款心脏监护仪和除颤器,获得了美国食品药品监督管理局(USFDA)的预售批准。它能够识别出或不存在心室纤颤或快速心动心动过速,并且能够在不进行干预的情况下确定是否应进行除颤,如果需要,应自动充电并要求将电气冲动到个人的心脏中。CERP - 在所有学校和/或学校赞助的活动中突然心脏骤停的情况下,应遵循的心脏应急响应计划。应将此列表固定在AED携带箱上。经过认证的培训人员 - 指的是成功完成美国心脏协会认可的CPR AED培训计划的任何个人,并没有过期认证。每个位置的经过认证的培训人员必须在附录A中的经过认证的训练有素的人员电话列表中列出。在突然心脏骤停的情况下,经过认证的培训人员是唯一被授权操作AED的人。响应团队 - 一支分配给学校的个人团队,他们在回应突然的心脏事件时具有特定的角色和责任。响应团队成员由经过认证的培训人员(附录A)组成。监督医师 - 田纳西州拥有无限制执业医学或整骨疗法的医生。AED地点,孟菲斯 - 塞尔比县学校(MSC)内的所有学校和行政设施均应配备至少一(1)位AED。所有学校将在在学生,员工和/或访客在场的时候在该地区的总办公室外有一(1)个AED。除了在总办公室外的AED外,中学和高中还将在健身房中有一(1)个AED。如果学校有一个足球场,则将在那里安装一个AED,并带有适当的标牌,因此很容易找到它。安装在管理建筑物中的AED将具有适当的标牌,因此可以轻松找到它们。风险管理办公室将在设施内不存在主办公室和/或体育馆时,将咨询有执照的医生,以获取最合适的位置。