RNA 样本要求:RNA 样本应不含盐(例如 Mg 2+ 或胍盐、二价阳离子螯合剂(例如 EDTA 或 EGTA)或有机物(例如苯酚或乙醇)。RNA 必须不含 DNA。gDNA 是 RNA 制备中的常见污染物。它可能来自有机提取的中间相,或者当固相 RNA 纯化方法的二氧化硅基质超载时。如果总 RNA 样本可能含有 gDNA 污染,则用 DNase I 处理样本以去除所有痕迹的 DNA(此试剂盒中不提供 DNase)。用 DNase I 处理后,应从样本中去除酶。DNase I 的任何残留活性都可能降解富集所需的寡核苷酸。可以使用苯酚/氯仿提取和乙醇沉淀从提取物中去除 DNase I。
处理化学药品和生物剂时,您需要始终穿安全设备,包括实验室外套,手套和安全护目镜。虽然用于小麦感染的主要生物学剂是澳大利亚常见的病原体,但您必须将它们视为普遍关注的感染剂。谨慎对待他们。请勿将其从实验室中删除。不要通过衣服散布它们。使用专用的笔记本和笔在迷你研究项目中做笔记。在实验室中不要将任何东西放在嘴里。每次离开实验室时洗手。
HiFi 制备试剂盒 96 和工作流程专为 NGS 液体处理自动化而设计。因此,该协议旨在描述 SRE、剪切、文库制备酶促反应和珠子清理,以指导自动化方法开发,或在某些情况下进行手动制备。由于自动化仪器之间存在差异,可能需要进行本文未描述的修改,以使协议适应您的特定仪器。请访问 WGS 页面或联系您当地的支持团队,获取具有 PacBio 合格方法的仪器列表。该协议是使用 Hamilton NGS STAR MOA 系统开发的。
对于成年果mo虫,请确保没有可检测到的AAV9中和抗体。这可以由宾夕法尼亚大学的Penn Vector Core(https://gtp.med.upenn.edu/intranethome/core-facilities-internalle/immunology)
RNA 引导的核酸内切酶(如 Cas9)可在细胞中提供有效的靶向基因组编辑,但也可能切割整个基因组中的脱靶位点。化脓性链球菌 Cas9 (SpCas9) 的工程变体已被开发出来以全面降低脱靶活性,但个别脱靶可能仍然存在,或者靶向活性可能受到损害。为了在保持强大的靶向编辑的同时对抗特定脱靶的活性,我们开发了一种新颖的 M13 噬菌体介导选择方法。使用这种方法,连续几轮正向和负向选择用于识别增强或减弱特定基因组序列编辑活性的 Cas9 突变。我们还引入了寡核苷酸定向靶标扫描诱变 (SMOOT),这是一种全面的诱变方法,用于创建高度多样化的 Cas9 变体库,这些库可以通过基于噬菌体的选择进行挑战。我们的平台识别出新的 SpCas9 突变体,这些突变体在生化测定和 T 细胞中减轻了对脱靶的切割,同时保持了比以前描述的变体更高的靶向活性。我们描述了一种进化的变体,S . pyogenes Adapted to Reduce Target Ambiguity Cas9 (SpartaCas),它由最丰富的突变组成,每个突变的功能未知。这种进化的 Cas9 突变体减少了脱靶切割,同时保留了对多个治疗相关靶标的有效编辑。使用我们的系统对 Cas9 进行定向进化展示了一种改进的结构独立方法,可以有效地设计核酸酶活性。
近年来利用CRISPR-Cas9系统构建的二倍体作物突变体文库为功能基因组学和作物育种提供了丰富的资源,然而由于基因组的复杂性,在多倍体植物中实现大规模的定点诱变是一项巨大的挑战。本文证明了利用混合CRISPR文库在异源四倍体油菜中实现基因组规模定点编辑的可行性。共设计了18,414个sgRNA来靶向10,480个目的基因,得到了1104株含有1088个sgRNA的再生转基因植株。编辑询问结果显示,178个基因中93个被鉴定为突变,编辑效率为52.2%。此外,我们发现 Cas9 介导的 DNA 切割倾向于在由同一个 sgRNA 引导的所有靶位点发生,这是多倍体植物中的新发现。最后,我们展示了利用后基因分型植物对各种性状进行反向遗传筛选的强大能力。从正向遗传研究中发现了几个可能主导脂肪酸谱和种子油含量且尚未报道的基因。我们的研究为功能基因组学、优良作物育种提供了宝贵的资源,并为其他多倍体植物的高通量定向诱变提供了良好的参考。
DNA 片段化是基于杂交捕获的短读测序中文库制备过程中的一个基本步骤。迄今为止,人们一直使用超声波来制备适当大小的 DNA,但这种方法会导致大量 DNA 样本损失。最近,研究采用了依赖于 DNA 内切酶酶促片段化的文库制备方法来最大限度地减少 DNA 损失,尤其是在纳米量样本中。然而,尽管它们被广泛使用,但酶促片段化对所得序列的影响尚未得到仔细评估。在这里,我们对使用超声波和酶促片段化方法制备的相同肿瘤 DNA 样本的体细胞变异进行了成对比较。我们的分析显示,与通过超声波创建的文库相比,内切酶处理的文库中反复出现的人工 SNV/indel 数量要多得多。这些人工制品以基因组背景下的回文结构、测序读取中的位置偏差和多核苷酸替换为标志。利用这些独特的特性,我们开发了一种过滤算法,可以高特异性和灵敏度地区分真正的体细胞突变和人为噪声。噪声消除恢复了肿瘤样本中突变特征的组成。因此,我们提供了一种信息学算法来解决因内切酶介导的碎片化而产生的测序错误,这是本研究中首次强调的。
背景 20 多年前,人类基因组计划产生了第一个组装的人类基因组 [1,2]。基因组测序工作揭示了与疾病相关的基因和遗传变异,但大部分并未揭示基因功能。因此,功能基因组学工作对于确定已鉴定的约 20,000 个人类蛋白质编码基因的功能至关重要。在过去十年中,基于 CRISPR(成簇的规律间隔的短回文重复序列)的筛选增加了全基因组遗传筛选的便利性,使研究人员能够发现生物途径的新成分、确定现有药物的机制、确定新的治疗靶点并揭示协同遗传关系 [3-7]。然而,由于全基因组向导文库的规模(20,000–200,000 + 个元素)和典型的细胞覆盖率(500–1000 倍)需要准确量化基因命中并平均整个群体中与表型无关的变异,每次筛选需要每个样本数千万到数亿个细胞 [ 8 – 12 ]。这一要求对需要大规模培养的细胞模型提出了后勤挑战
描述:该设施是小分子和功能基因组学高通量筛选实验室。它以模块化工作站为基础,大多数测定都在 384 孔板中进行。ICCB-Longwood 有超过 500,000 种小分子可供筛选,化合物收集量不断增加。全人类和小鼠基因组 siRNA 文库、阵列 sgRNA 文库、lncRNA siRNA 文库以及 miRNA 模拟物和抑制剂文库也可供筛选。这些文库可以在基因组级别或重点子集上进行筛选。