van der waals异质结构中的Moiré超级晶格代表了高度可调的量子系统,在多体模型和设备应用中都引起了极大的兴趣。然而,在室温下,Moiré电位对光物质相互作用的影响在很大程度上仍然没有。在我们的研究中,我们证明了MOS 2 /WSE 2中的Moiré潜力促进了室温下层间激子(IX)的定位。通过执行反射对比光谱,我们证明了原子力显微镜实验支持的原子重建在修饰内部激子中的重要性。降低扭转角时,我们观察到IX寿命会更长,并且发光增强,表明诸如缺陷之类的非辐射衰减通道被Moiré电位抑制。此外,通过将Moiré超晶格与硅单模腔的整合,我们发现,使用Moiré捕获的IXS的设备显示出明显较低的阈值,与利用DelaCalized IXS的设备相比,较小的一个数量级。这些发现不仅鼓励在升高温度下在Moiré超晶格中探索多体物理学,而且还为利用光子和光电应用中的这些人工量子材料铺平了道路。
简介 AI文案和AI改写是利用人工智能(AI)创建和处理文本内容的过程[1]。这些过程包括使用机器学习算法和神经网络来生成可用于文案、营销、新闻、宣传、博客、教育等各个领域的文本 [2]。在技术和营销快速发展的背景下,人工智能文案和人工智能改写变得越来越重要,因为它们可以显著加快内容创作过程并提高其质量 [3]。现代人工智能技术使我们能够创建质量不逊于人类编写的文本的文本。这为商业开辟了新的机会,因为它降低了内容创作的成本并提高了其有效性[4]。然而,尽管人工智能在文案撰写和改写中的应用有诸多优势,但也引发了许多与所创作文本的语言特征有关的问题,以及对文案撰写的新挑战 [1]。本研究旨在分析人工智能生成文本的语言特征并确定文案写作面临的新挑战。在
这些拟议的自动拨号规则是委员会为保护消费者免受人工智能生成的骗局而采取的一系列行动中的最新举措,这些骗局会误导消费者并误导公众,使消费者能够做出明智的决定。委员会提出了新的透明度标准,要求在广播和电视的政治广告中使用人工智能技术时进行披露。委员会最近通过了一项宣告性裁决,明确指出,在未经被叫方事先明确同意或豁免的情况下,针对消费者的常见自动拨号诈骗中使用的语音克隆技术是非法的。它还提议对使用深度伪造、人工智能生成的语音克隆技术和来电显示欺骗进行明显非法的自动拨号进行巨额罚款,以便在 2024 年 1 月初选之前向潜在的新罕布什尔州选民传播选举错误信息。
由于其广泛的应用范围,从文本描述中产生人类动作已引起了越来越多的研究兴趣。但是,只有少数作品将人类场景的互动与文本条件一起考虑,这对于视觉和物理现实主义至关重要。本文提出了在3D门场景中产生人类动作的任务,鉴于人类习惯的文本描述。由于文本,场景和运动的多种形式性质以及对空间推理的需求,此任务提出了挑战。为了应对这些挑战,我们提出了一种新方法,将复杂的概率分解为两个更可管理的子问题:(1)目标对象的语言接地和(2)以对象为中心的信息产生。对于目标对象的语言基础,我们利用大型语言模型的力量。对于运动生成,我们设计了一个以对象为中心的场景代表生成模型,以专注于目标对象,从而降低场景的复杂性并促进人类运动与对象之间关系的建模。实验证明了与基准相比,我们的方法的更好运动质量并验证了我们的设计选择。代码将在链接上可用。
文本到图像生成模型正变得越来越流行,公众可以访问。由于这些模型看到大规模的部署,因此有必要深入研究其安全性和公平性,以免消散和永久存在任何形式的偏见。然而,存在的工作重点是检测封闭的偏见集,定义了先验的偏见,将研究限制为众所周知的概念。在本文中,我们解决了出现OpenBias的文本到图像生成模型中开放式偏见检测的挑战,该模型是一条新管道,该管道可识别和量化双质量的严重性,而无需访问任何预编译的集合。OpenBias有三个阶段。在第一阶段,我们利用大型语言模型(LLM)提出偏见,给定一组字幕。其次,目标生成模型使用相同的字幕绘制图像。最后,一个视觉问题回答模型认识到了先前提出的偏见的存在和范围。我们研究了稳定扩散1.5、2和XL强调新偏见的稳定扩散,从未研究过。通过定量实验,我们证明了OpenBias与当前的封闭式偏见检测方法和人类判断一致。
现有的文本视频检索解决方案本质上是侧重于最大程度地提高条件可能性的模型,即P(候选人|查询)。虽然很简单,但这种事实上的范式却忽略了基本的数据分布p(查询),这使得识别出分布数据的挑战。为了解决这一限制,我们从生成观点创造性地解决了此任务,并将文本和视频之间的相关性建模为其关节概率P(候选人,查询)。这是通过基于扩散的文本视频检索框架(扩散-RET)来完成的,该框架将检索任务建模为从噪声中产生关节分布的过程。在训练过程中,从发电和犯罪的角度优化了Diffusionret,其发电机通过生成损失优化,并且具有对比度损失的训练的特征提取器。以这种方式,diffusionret巧妙地杠杆化了生成和歧视方法的优势。在五个常用的文本检索基准测试中进行了广泛的实验,包括MSRVTT,LSMDC,MSVD,ActivityNet字幕和DIDEMO,并具有出色的性能,证明了我们方法的效果。更加谨慎,没有任何修改,diffusionret甚至在外域检索设置中表现良好。我们认为这项工作带来了对相关领域的基本见解。代码可从https://github.com/jpthu17/diffusionret获得。
提供给文本对图像差异模型的提示的质量决定了生成的内容对用户意图的忠诚程度,通常需要“及时工程”。要通过及时的工程来利用目标图像的视觉概念,当前方法在很大程度上通过优化然后将它们映射到伪tokens来依赖嵌入反演。然而,使用这种高维矢量表示是具有挑战性的,因为它们缺乏语义和可解释性,并且只允许使用它们时模拟矢量操作。相反,这项工作着重于反转扩散模型,以直接获得可靠的语言提示。这样做的挑战在于,由此产生的优化问题从根本上是离散的,提示的空间呈较大。这使得使用标准优化技术,例如随机梯度下降,困难。为此,我们利用延迟的投影方案来访问代表模型中词汇空间的提示。此外,我们利用了扩散过程的时间段与图像中不同级别的细节相差的发现。后来的,嘈杂的,前传扩散过程的时间段对应于语义信息,因此,此范围内的迅速反转提供了代表图像语义的令牌。我们表明,我们的方法可以确定目标图像的语义可解释和有意义的提示,该提示可用于合成具有相似内容的多样化图像。我们说明了优化提示在进化图像生成和概念删除中的应用。
生成式预训练 Transformer 大型语言模型的最新进展强调了在学术环境中不公平使用人工智能 (AI) 生成内容的潜在风险,并加大了寻找检测此类内容的解决方案的力度。本文研究了人工智能生成文本检测工具的一般功能,并根据准确性和错误类型分析对其进行了评估。具体来说,该研究试图回答以下研究问题:现有检测工具是否能够可靠地区分人类书写的文本和 ChatGPT 生成的文本,以及机器翻译和内容混淆技术是否会影响对人工智能生成文本的检测。该研究涵盖了 12 种公开可用的工具和两种在学术环境中广泛使用的商业系统(Turnitin 和 PlagiarismCheck)。研究人员得出结论,现有的检测工具既不准确也不可靠,主要偏向于将输出归类为人类书写的文本,而不是检测人工智能生成的文本。此外,内容混淆技术会显著降低工具的性能。该研究做出了几项重要贡献。首先,它总结了该领域最新的类似科学和非科学成果。其次,它展示了迄今为止最全面的测试之一的结果,该测试基于严格的研究方法、原始文档集和广泛的工具覆盖范围。第三,它讨论了在学术环境中使用检测工具检测人工智能生成的文本的含义和缺点。
抽象的消费者生成的评论在建立信任和促进数字平台上的交易方面起着决定性的作用。但是,先前的研究表明了各种问题,例如,只有少数提供评论,伪造评论和不确定的评论的消费者。我们在餐厅预订平台的背景下使用一个实验来研究不一致的评论对消费者交易决策期限的影响。在第二个实验中,我们研究了审查不一致的情况下的审查组件的相对重要性。利用双重过程理论和媒体丰富性理论,我们预测不一致的评论会导致消费者交易决策(H1)所需的更长的时间,并导致用户的交易决策主要基于定性组成部分(H2)。尽管我们没有找到不一致的餐厅评论对交易决策的持续时间不一致的一般支持,但我们发现证据表明,对于不一致的餐厅评论,定性组成部分的极性对于交易决策的持续时间和决策本身至关重要。
Atlassian是Jira,Trello和Confluence背后的公司,在其产品中收到了大量的客户反馈。最初,他们依靠手动分析和基于NLP的工具来分类和解释这些数据。但是,随着反馈量的增长,NLP的局限性变成了瓶颈。
