现有的文本视频检索解决方案本质上是侧重于最大程度地提高条件可能性的模型,即P(候选人|查询)。虽然很简单,但这种事实上的范式却忽略了基本的数据分布p(查询),这使得识别出分布数据的挑战。为了解决这一限制,我们从生成观点创造性地解决了此任务,并将文本和视频之间的相关性建模为其关节概率P(候选人,查询)。这是通过基于扩散的文本视频检索框架(扩散-RET)来完成的,该框架将检索任务建模为从噪声中产生关节分布的过程。在训练过程中,从发电和犯罪的角度优化了Diffusionret,其发电机通过生成损失优化,并且具有对比度损失的训练的特征提取器。以这种方式,diffusionret巧妙地杠杆化了生成和歧视方法的优势。在五个常用的文本检索基准测试中进行了广泛的实验,包括MSRVTT,LSMDC,MSVD,ActivityNet字幕和DIDEMO,并具有出色的性能,证明了我们方法的效果。更加谨慎,没有任何修改,diffusionret甚至在外域检索设置中表现良好。我们认为这项工作带来了对相关领域的基本见解。代码可从https://github.com/jpthu17/diffusionret获得。
文本对图像模型的当前指标通常依赖于不足以代表人类真正偏好的统计指标。尽管最近的工作试图通过人类注释的图像来学习这些偏好,但它们将人类偏好的丰富挂毯降低到单个总分。然而,当人类评估不同方面的图像时,偏好会有所不同。因此,为了学习多维人类偏好,我们提出了多维偏好评分(MPS),这是评估文本对图像模型的第一个多维偏好评分模型。MPS引入剪辑模型上的偏好条件模块,以学习这些不同的偏好。它是根据我们的多维人类偏好(MHP)数据集进行了训练的,该数据集包括607,541图像的四个维度(即美学,语义一致性,详细信息,详细质量和整体评估)的918,315个人类偏好选择(即,美学,语义一致性,细节质量和整体评估)。这些信息是由各种最新的文本对图像模型生成的。MPS在4个维度上的3个数据集上优于现有的评分方法,从而使其成为评估和改进文本对象的有希望的指标。该模型和数据集将被公开使用,以促进未来的研究。项目页面:https://wangbohan97.github.io/mps/。
提供给文本对图像差异模型的提示的质量决定了生成的内容对用户意图的忠诚程度,通常需要“及时工程”。要通过及时的工程来利用目标图像的视觉概念,当前方法在很大程度上通过优化然后将它们映射到伪tokens来依赖嵌入反演。然而,使用这种高维矢量表示是具有挑战性的,因为它们缺乏语义和可解释性,并且只允许使用它们时模拟矢量操作。相反,这项工作着重于反转扩散模型,以直接获得可靠的语言提示。这样做的挑战在于,由此产生的优化问题从根本上是离散的,提示的空间呈较大。这使得使用标准优化技术,例如随机梯度下降,困难。为此,我们利用延迟的投影方案来访问代表模型中词汇空间的提示。此外,我们利用了扩散过程的时间段与图像中不同级别的细节相差的发现。后来的,嘈杂的,前传扩散过程的时间段对应于语义信息,因此,此范围内的迅速反转提供了代表图像语义的令牌。我们表明,我们的方法可以确定目标图像的语义可解释和有意义的提示,该提示可用于合成具有相似内容的多样化图像。我们说明了优化提示在进化图像生成和概念删除中的应用。
摘要。视觉语言预处理(VLP)模型已在众多计算机视觉应用中被证明。在本文中,我们基于图像扫描和电子健康记录中的文本介绍,为医疗领域开发VLP模型,以促进计算机辅助诊断(CAD)。为了实现这一目标,我们介绍了MedBlip,这是一种轻巧的CAD系统,该系统启动了从架子冻结的预训练的图像编码器和大型语言模型中启动VLP。我们合并了一个MEDQFormer模块,以弥合3D医学图像和2D预训练的图像编码器和语言模型之间的差距。为了评估MEDBLIP的有效性,我们从五个公共阿尔茨海默氏病(AD)数据集中收集了30,000多个图像量:ADNI,NACC,OASIS,OASIS,AIBL和MIRIAD。在这个大规模的广告集中,我们的模型在健康,轻度认知障碍(MCI)和AD主题的零摄像分类中表现出了令人印象深刻的表现,并且还显示了其在M3D-VQA-AD数据集中的医学视觉问题An-Swering(VQA)中的能力。代码和预训练模型可在https://github.com/qybc/medblip上找到。
这些拟议的自动拨号规则是委员会为保护消费者免受人工智能生成的骗局而采取的一系列行动中的最新举措,这些骗局会误导消费者并误导公众,使消费者能够做出明智的决定。委员会提出了新的透明度标准,要求在广播和电视的政治广告中使用人工智能技术时进行披露。委员会最近通过了一项宣告性裁决,明确指出,在未经被叫方事先明确同意或豁免的情况下,针对消费者的常见自动拨号诈骗中使用的语音克隆技术是非法的。它还提议对使用深度伪造、人工智能生成的语音克隆技术和来电显示欺骗进行明显非法的自动拨号进行巨额罚款,以便在 2024 年 1 月初选之前向潜在的新罕布什尔州选民传播选举错误信息。
• 使用潜意识、操纵或欺骗手段扭曲行为,妨碍知情决策,造成重大伤害。 • 利用与年龄、残疾或社会经济状况相关的弱点扭曲行为,造成重大伤害。 • 生物特征分类系统推断敏感属性(种族、政治观点、工会会员资格、宗教或哲学信仰、性生活或性取向),但标记或过滤合法获取的生物特征数据集,或执法部门对生物特征数据进行分类的情况除外。 • 社会评分,即根据社会行为或个人特征对个人或群体进行评估或分类,对这些人造成有害或不利的待遇。 • 仅根据分析或性格特征评估个人犯罪的风险,但用于增强基于与犯罪活动直接相关的客观、可验证事实的人类评估的情况除外。 • 通过从互联网或闭路电视录像中无针对性地抓取面部图像来编制面部识别数据库。 • 在工作场所或教育机构推断情绪,医疗或安全原因除外。 • 在公共场所为执法部门提供“实时”远程生物特征识别 (RBI),但以下情况除外:
Gregory G. Dess是德克萨斯大学达拉斯分校的Andrew R. Cecil管理主席。他的主要研究兴趣是战略管理,组织环境关系和知识管理。他在学术和从业者期刊上发表了许多有关这些主题的文章。他还在各种以从业者为导向和学术期刊的编辑委员会中任职。在2000年8月,他被入选《管理学院名人堂》作为其特许成员之一。DES教授在美国,欧洲,非洲,香港和澳大利亚进行了执行计划。在1994年,他是葡萄牙Oporto的富布赖特学者。2009年,他获得了伯尔尼大学(瑞士)的荣誉博士学位。他获得了华盛顿大学(西雅图)的工商管理博士学位,并获得了佐治亚理工学院的BIE学位。
尽管上下文化的语言模型最近在各种NLP任务上取得了成功,但语言模型本身仍无法捕获长长的多句文档的文本共同(例如,段落)。人类经常就发言之前就何种方式以及如何发言做出结构性决定。通过这种高级决策和以连贯的方式构建文本的指导性实现被称为计划过程。模型可以在哪里学习这样的高级相干?段落本身包含在这项工作中称为自upervision的各种形式的归纳相干信号,例如句子顺序,局部关键字,修辞结构等。以此为动机,这项工作为新的段落完成任务p ar -c om;在图形中预测蒙版的句子。但是,该任务遭受了预测和选择相对于给定上下文的适当局部内容。为了解决这个问题,我们提出了一个自我监督的文本计划,该计划可以预测首先说出的内容(内容预测),然后使用预测的内容指导验证的语言模型(表面实现)。SSPlanner在自动和人类评估中的段落完成任务上的基线生成模型优于基线生成模型。我们还发现,名词和动词类型的关键字的组合是最有效的内容选择。提供了更多内容关键字,总体发电质量也会提高。
抽象的消费者生成的评论在建立信任和促进数字平台上的交易方面起着决定性的作用。但是,先前的研究表明了各种问题,例如,只有少数提供评论,伪造评论和不确定的评论的消费者。我们在餐厅预订平台的背景下使用一个实验来研究不一致的评论对消费者交易决策期限的影响。在第二个实验中,我们研究了审查不一致的情况下的审查组件的相对重要性。利用双重过程理论和媒体丰富性理论,我们预测不一致的评论会导致消费者交易决策(H1)所需的更长的时间,并导致用户的交易决策主要基于定性组成部分(H2)。尽管我们没有找到不一致的餐厅评论对交易决策的持续时间不一致的一般支持,但我们发现证据表明,对于不一致的餐厅评论,定性组成部分的极性对于交易决策的持续时间和决策本身至关重要。
Atlassian是Jira,Trello和Confluence背后的公司,在其产品中收到了大量的客户反馈。最初,他们依靠手动分析和基于NLP的工具来分类和解释这些数据。但是,随着反馈量的增长,NLP的局限性变成了瓶颈。
