本文献综述分析了当前和基础研究,这些研究涉及女性创业与 iDE 确定的繁荣目标之间的联系。这些繁荣目标反映了我们的支柱,但更重要的是,它们反映了 iDE 客户在被问及繁荣对他们意味着什么时提出的共同主题。主题包括营养、健康和卫生;教育;家庭资产和收入;市场弹性;赋权和社会包容。本综述中重点介绍的文献向我们指出了研究人员和开发同行发现的这些主题与对女性企业家的投资之间的联系,以指导我们在制定 iDE 战略时应考虑哪些因素。所包含的文献强调了我们在设计计划时必须考虑的积极关联和缓解/背景因素,重点关注 iDE 运营所在国家/地区的人们眼中的繁荣:洪都拉斯、尼加拉瓜、加纳、肯尼亚、莫桑比克、马达加斯加、赞比亚、埃塞俄比亚、孟加拉国、尼泊尔、柬埔寨、越南和具有类似背景的邻国。
为了加速经济脱碳,政府和企业正在投资氢气作为低排放或零排放燃料,以取代化石气体(也称为天然气或甲烷气体)。在联邦层面,2021 年 6 月,美国能源部 (DOE) 启动了首个“能源地球计划”,旨在十年内将“清洁氢气”的成本降低 2 至 1 美元/公斤,从而为应对气候危机做出贡献。3 为了支持这一目标,《通胀削减法案》引入了新的清洁氢气生产税收抵免,并扩大了现有的投资税收抵免范围,以适用于氢气项目和独立的氢气储存技术。4 此外,通过《两党基础设施法》,联邦政府将向七个区域氢气中心投资 70 亿美元,5 预计这也将催化超过 400 亿美元的私人投资。6
相关的关键发现: - 自动化技术取代了人工劳动,可能会减少劳动力需求,工资和就业(第198-201页)。这种位移效应可以使每个工人的工资和产出分离,从而导致劳动力占国民收入的份额下降(第198页)。- 虽然自动化的生产率提高,但它们可能并不总是抵消工作损失(第202-205页)。创建新任务是一项至关重要的平衡力,但是不能保证这个过程,并且可能落后于自动化,这可能会导致整体生产率增长速度较慢(第205-207、210-211、223-224页)。- 由于工人重新分配和技能不匹配所需的时间,自动化技术的引入会导致经济调整缓慢(第199,208-209页)。这种不匹配可以降低生产率的提高并加剧不等式(第221-223页)。由资本补贴等因素驱动的过度自动化也可能会阻碍生产率(第210-211,224-226页)。- 新任务的创建是反对自动化负面影响的重要反击力(第205-207、217-218页)。但是,新任务的发展需要投资,并且可以以其他技术进步为代价来阻碍自动化(第223-224页)。- AI可能无法取代所有人类劳动,因为其当前的应用集中在特定的,定义明确的任务上(第207页)。但是,新任务和工人技能要求之间的技能不匹配可以大大减慢适应性(第221-223页)。- 公司应预期技能不匹配并投资于培训计划,以帮助员工适应自动化创建的新任务(第223页)。通过政策调整来解决过度自动化并促进创建新的,劳动力密集的任务可以减轻对工人的负面影响(第224-226页)。
我们回顾了具有等速储层的晚期绝热压缩空气存储厂的分析模型的文献,重点是可以从模型中提取的见解。审查表明,文献中缺少拥有绝热储层,绝热涡轮机械以及没有油门的植物的模型。假设植物在准稳态状态下运行,我们继续得出这种模型,可以将空气视为热量和热完美的气体,并且热能存储单元不含热和压力损失。模型导致关键性能指标的封闭式表达式,例如植物效率和体积能量密度,就组成效率和压力比而言。这些表达式的推导基于涉及温度和压力的同时时间变化的近似积分。近似值导致相对误差小于1%。模型表明压缩和扩展工作,植物效率和最高工艺温度显示最小。该模型还表明,对于给定的非二维存储容量和最大储层压力,最小化最大过程温度的植物的最大效率大约等于最大化效率的植物的最低效率。对于具有绝热洞穴和绝热热能储存单元的两阶段工厂,我们的分析模型预测体积能量密度在4.76%以内,表明它足够准确,可以用于初始植物设计。
相关的关键发现: - 诊断错误每年影响超过1200万美国人,耗资超过1000亿美元(第5、15页)。- 基于AI的技术提供了诸如较早的疾病检测,更一致的数据分析和改善患者的访问效果(第10、11、12页)。- 几种ML技术有助于诊断癌症,糖尿病性视网膜病,阿尔茨海默氏病,心脏病和Covid -19。这些工具主要使用图像数据(X射线,MRI等),但不像其他数据类型一样(第11、12页)。- 美国大多数主要医疗中心使用了一种心电图监测技术,而另一种Covid -19检测技术仅在少数大学和研究机构中使用(第6页)。- ML诊断技术尚未看到广泛采用(第14页)。- 公司报告采用水平的不同;一种ECG技术被广泛使用,而Covid-19的另一种则仅限于研究(第6、14页)。- 医疗提供者通常会犹豫采用ML技术,直到现实世界的绩效得到很好的表现为止(第6、23页)。- 三种新兴方法是自主,适应性和面向消费者的ML诊断(第17页)。- 自适应ML,使用新的患者数据更新算法,可能会提高准确性,但也可能导致不一致的性能(第17-19页)。- 自主系统可以降低成本,提高能力并提高准确性,但是它们的创造和采用可能很困难(第18-19页)。- 面向消费者的工具提供了增加的患者访问和更广泛的数据收集,但也需要采取其他步骤来确保适当的结果(第21-22页)。- 采用ML的挑战包括在各种临床环境中展示现实世界的表现,确保技术满足实际的医疗需求,并在现有的监管框架中弥合差距(第23-27页)。- 研究表明,在临床部位之间的性能可能会有很大的不同,从而强调了对特定地点验证的需求(第23-24页)。- 关于算法验证和采用技术的监管差距,特别是对于具有适应性能力的人(第26、33页)。- 解决这些挑战的政策选择包括激励对ML技术的评估,扩大对高质量数据的访问以及促进开发人员,提供者和监管机构之间的协作(第28-31页)。
bud ad aki,S.,Kocevakomleni®,D.,Lukinacčić,J. KožUu ul,Ž。 div>(2014)。 div>
结果:有1,280个出版物符合19日,符合先天免疫的搜索策略,并于2022年1月1日至2022年10月31日出版。九百13篇文章和评论。美国的出版物数量最高(NP)为276,而没有自我引用的引用数量为7,085,而H-Index的H-Index为42,其中占总出版物的30.23%,其次是中国(NP:135,NC:135,NC:4,798和H-indindex:23),贡献了14.79%。关于NP的NP,Netea,Mihai G.(NP:7)来自荷兰是最有生产力的作者,其次是Joosten,Leo A.B.(NP:6)和Lu,Kuo-Cheng(NP:6)。法国法国研究型大学的出版物最多(NP:31,NC:2,071,H-INDEX:13),平均引文数(ACN)为67。免疫学杂志期刊具有最多的出版物(NP:89,NC:1,097,ACN:12.52)。“逃避”(强度1.76,2021-2022),“中和抗体”(强度1.76,2021-2022),“ Messenger RNA”(强度1.76,2021-2022),“线粒体DNA”,“力量DNA”(强度1.51,2021-2021-2022),“长度”(2021-2022),” Toll样受体”(强度1.51,2021-2022)是该领域的新兴关键字。
摘要 用户对人工智能 (AI) 系统的信任已越来越多地得到认可,并被证明是促进采用的关键要素。有人提出,人工智能系统必须超越以技术为中心的方法,走向以人为本的方法,这是人机交互 (HCI) 领域的核心原则。本综述旨在概述 23 项实证研究中的用户信任定义、影响因素和测量方法,以收集未来技术和设计策略、研究和计划的见解,以校准用户与人工智能的关系。研究结果证实,定义信任的方法不止一种。重点应该是选择最合适的信任定义来描述特定环境中的用户信任,而不是比较定义。研究发现,用户对人工智能系统的信任受到三个主要主题的影响,即社会伦理考虑、技术和设计特征以及用户特征。用户特征在研究结果中占主导地位,强调了用户参与从开发到监控人工智能系统的重要性。研究还发现,不同环境以及用户和系统的各种特征都会影响用户信任,这凸显了根据目标用户群的特征选择和定制系统功能的重要性。重要的是,社会伦理考虑可以为确保用户与人工智能互动的环境足以建立和维持信任关系铺平道路。在衡量用户信任方面,调查是最常用的方法,其次是访谈和焦点小组。总之,在使用或讨论人工智能系统的每一个环境中,都需要直接解决用户信任问题。此外,校准用户与人工智能的关系需要找到不仅对用户而且对系统都适用的最佳平衡点。
摘要 用户对人工智能 (AI) 系统的信任已得到越来越多的认可,并被证明是促进采用的关键因素。有人提出,支持人工智能的系统必须超越以技术为中心的方法,转向以人为本的方法,这是人机交互 (HCI) 领域的核心原则。本评论旨在概述 23 项实证研究中的用户信任定义、影响因素和测量方法,以收集未来技术和设计策略、研究和计划的见解,以校准用户与人工智能的关系。研究结果证实,定义信任的方法不止一种。选择最合适的信任定义来描述特定环境中的用户信任应该是重点,而不是比较定义。研究发现,用户对人工智能系统的信任受到三个主要主题的影响,即社会伦理考虑、技术和设计特征以及用户特征。用户特征在研究结果中占主导地位,强调了从开发到监控人工智能系统的过程中用户参与的重要性。研究还发现,用户和系统的不同环境和各种特征也会影响用户信任,强调了根据目标用户群的特征选择和定制系统功能的重要性。重要的是,社会伦理考虑可以为确保用户与人工智能互动的环境足以建立和维持信任关系铺平道路。在衡量用户信任方面,调查是最常用的方法,其次是访谈和焦点小组。总之,在使用或讨论支持 AI 的系统的每个情况下,都需要直接解决用户信任问题。此外,校准用户与 AI 的关系需要找到不仅对用户而且对系统都适用的最佳平衡。
肠道分子对于人体来说是必不可少的。据估计,我们体内的微生物共同占人类细胞数量的十倍(Qin等,2010)。最近的证据强烈表明,这些微生物的功能几乎像额外的器官,积极参与塑造和维持我们的生理学(Qi等,2021)。肠道微生物群在调节激素水平,对宿主激素的反应甚至产生其激素方面起关键作用(Sudo,2014年)。因此,它被认为是完全闪烁的内分泌器官,其作用范围延伸至遥远的器官和途径(Qi等,2021)。微生物群和激素之间的复杂关系对健康,行为,代谢,免疫和繁殖的各个方面具有深远的影响(Neuman等,2015)。健康的肠道微生物群由6个门组成,包括富公司,细菌植物,肌动杆菌,proteeobacteria,fusobacteria和verrucomicrobia(Crudele等,2023; Hamjane et al。,2024)。两个门的富公司和细菌剂占肠道菌群的90%(Hamjane等,2024)。菌群组成的变化会显着影响健康。这些变化可以在原因或后果的背景下进行评估。然而,不可否认的是,肠道菌群与我们身体的系统协同作用,以深刻影响健康。微生物群和激素之间的相互作用是双向的。在William的评论中所证明的是,激素具有直接影响菌群多样性和组成的能力,而相反,微生物群可以调节激素的产生并介导激素功能(Williams等,2020)。肠道菌群的组成因性激素,下丘脑 - 垂体 - 肾上腺(HPA)轴和胰岛素的失调,喂养行为和肥胖(Yoon and Kim,2021; Farzi et al。,2018; Kelly et al。,2018; Kelly et al。,2015; rusch et;肠道菌群通过与胰岛素,生长素素和GLP-1等激素相互作用,在调节喂养行为和代谢中起关键作用(Williams等,2020)。研究肠道菌群与肥胖之间关系的研究解释了肠道微生物群可以改变宿主代谢以及不疾病的肠道肠菌群在肥胖发展中的作用(Qi等,2021; Angelakis等,2012; Everard et el。,Everard等,2013; Everard等,2013)。肠道菌群产生的数十种代谢产物会影响能量调节和胰岛素敏感性(Qi等,2021;Wahlström等,2016)。代谢物,例如短链脂肪酸(SCFA)和胆汁酸在代谢综合征的中心病理中起重要作用,例如胰岛素抵抗;这些代谢物是影响能量平衡和胰岛素敏感性的肠道菌群的产物(Wahlström等,2016; Den Besten等,2015)。此外,抗糖尿病药物通过促进负责SCFA产生的微生物群生长,从而对丁酸酯和丙酸酯的水平产生积极影响。了解肠道细菌代谢物在内分泌疾病发展中的各种影响对于发现针对代谢疾病的新靶标和新药的发展至关重要。这些微生物群驱动的效应的潜力是深刻的,需要进一步研究其基础。