Sarah Hawes 1,Bo Liang,3,Braden Oldham 1,Braden Oldam 1,Lupeng Wang 1,Bin Song 1,
摘要:细菌性斑点病是番茄的一种严重病害,由至少四种黄单胞菌引起。这些菌种包括X. euvesicatoria(T1 菌种)、X. vesicatoria(T2 菌种)、X. perforans(T3 和 T4 菌种)和 X. gardneri,每组菌种的地理分布不同。目前,X. gardneri 和 X. perforans 是北美番茄的两种主要细菌性病原体,其中 X. perforans(T4 菌种)在东海岸占主导地位,而 X. gardneri 在中西部占主导地位。该病害可导致高达 66% 的产量损失。由于缺乏有效的化学防治措施和商业抗性品种,该病害的管理具有挑战性。尽管已经鉴定出主要的抗性基因(R)和数量抗性,但抗细菌性斑点病的番茄育种受到多种因素的阻碍,包括克服抗性的病原体新种群的出现、抗性的多基因控制、连锁累赘、抗性的非加性成分以及幼苗测定和田间抗性之间的低相关性。含有 Bs2 和 EFR 基因的转基因番茄对多个黄单胞菌种群均有效。然而,由于公众的担忧和复杂的监管流程,它尚未实现商业化。基因组学辅助育种、基于效应的基因组学育种和基因组编辑技术可能是实现番茄持久抗细菌性斑点病的新方法。本文的主要目的是了解番茄细菌性斑点病的现状,包括其分布和病原体多样性、疾病管理中的挑战、抗病来源、抗性遗传学和育种,以及新育种方法的未来前景。
COSMX™SMI和解码器探测器未提供和/或交付给德国联邦共和国,用于在德国联邦共和国中使用,用于检测细胞RNA,Messenger RNA,MicroRNA,MicroRNA,核糖体RNA及其任何组合的方法,用于在荧光中以荧光量的分析,以进行杂交的分析,以进行分析,以进行分析,以进行分析。 (哈佛大学)作为EP 2 794 928 B1的德国部分的所有者。未经哈佛大学(哈佛大学)的总统和研究员的同意,禁止检测细胞RNA,Messenger RNA,microRNA,核糖体RNA及其任何组合的用途。
抽象斑点斑点(SB)是一种普遍的大麦叶子疾病,是由半野生真菌病原体索罗基尼亚人引起的。主要发生在全球潮湿的生长区域中,SB可能导致高达30%的收益率损失。遗传抗性仍然是疾病管理的最有效策略;然而,尽管先前鉴定出主要的抗性基因座,但大多数澳大利亚大麦品种都表现出敏感性。这项研究调查了澳大利亚大麦育种计划中的遗传结构潜在的斑点斑点抗性。连续两年使用单个分生孢子(SB61)在幼苗和成人生长阶段进行了抗药性。总共将337条大麦线与16,824个多态性飞镖seq™标记物一起键入。采用了两种映射方法:全基因组关联研究(GWAS)和基于单倍型的局部基因组估计值(局部GEBV)方法。两种方法都鉴定出在3H和7H铬的两个主要抗性相关区域,在跨生长阶段有效。此外,基于单倍型的局部GEBV方法揭示了GWAS未检测到的1H,3H和6H的抗性相关区域。单倍型堆叠分析强调了7H区域与其他抗药性单倍型相结合时,7H区域对成人植物抗性的批评作用,表明by-Gene的相互作用显着,并突出了斑点斑点耐药性的复杂,定量性质。这项研究证实了澳大利亚大麦繁殖种群中关键阻力基因座的存在,为斑点抗性抗性的遗传结构提供了新的见解,并强调了通过单倍型堆叠和全基因组预测方法增强抵抗力的潜力。
摘要。通过跳动的心向反向散射的场的空间和时间演变,同时用连贯的光照亮了其宏观和微血管化。要执行这些血管化图像,我们基于对空间去极化的斑点场的选择性检测,主要通过多个散射生成的空间去极化斑点场的选择性检测。我们通过空间或时间估计来考虑斑点对比度的计算。我们表明,通过后处理方法,可以明显增加观察到的血管结构的信噪比,这意味着计算运动场,该方法允许选择从不同心跳时期提取的相似帧。此后来的优化揭示了血管微观结构,其空间分辨率为100μm。©作者。由SPIE在创意共享归因4.0国际许可下出版。全部或部分分发或复制此工作需要完全归因于原始出版物,包括其DOI。[doi:10.1117/1.jbo.28.4.046007]
图S1。 用于案例(a)3(无噪声,t = 0。的斑点检测方法的结果)的结果 05)和(b)10(泊松噪声,t = 0。 2)。 红色圆圈是检测到的斑点的中心。 绿色正方形围绕着真实的斑点,而无需斑点,即 最接近检测到的点位置正是真正的斑点位置。 黄色正方形围绕着斑点移动,即 最接近检测到的点位置并不完全是真实的位置。 在(b)红色箭头指向检测到的位置,这些位置不完全在真实的位置,仅归因于噪声。S1。用于案例(a)3(无噪声,t = 0。05)和(b)10(泊松噪声,t = 0。2)。红色圆圈是检测到的斑点的中心。绿色正方形围绕着真实的斑点,而无需斑点,即最接近检测到的点位置正是真正的斑点位置。黄色正方形围绕着斑点移动,即最接近检测到的点位置并不完全是真实的位置。在(b)红色箭头指向检测到的位置,这些位置不完全在真实的位置,仅归因于噪声。
隶属关系:1化学与生物化学系,鲁尔大学(Ruhr University Bochum); 44801德国Bochum 2Münster大学医院皮肤病学系; 48149Münster,德国3哥廷根大学物理化学研究所; 37077,德国哥廷根4号皮肤病学系,Venereology and Anterergology,大学医学中心,哥廷根大学; 37075Göttingen,德国5分子生理学,心血管生理研究所,大学医学中心,乔治 - 奥格斯 - 大学; 37075Göttingen,德国6 Max Planck多学科科学研究所分子神经生物学系; 37077Göttingen,德国7 Zemos溶剂化科学中心Ruhr University Bochum; 44801德国Bochum 8Münster大学生理化学与病原体化学研究所; 48149Münster,德国9个生物医学纳米传感器,Fraunhofer微型电路和系统研究所; 47057,德国杜伊斯堡 +共享第一名合着者
。cc-by-nc-nd 4.0国际许可证是根据作者/资助者提供的,他已授予Medrxiv的许可证,以永久显示预印本。(未通过同行评审认证)
在2019年冠状病毒病(COVID-19)中出现了基于废水的流行病学(WBE),这是一种可扩展且广泛适用的方法,用于社区级别监测感染性疾病负担。缺乏严重急性呼吸综合征2(SARS-COV-2)的高分辨率粪便脱落数据限制了我们将WBE测量与疾病负担联系起来的能力。在这项研究中,我们提出了SARS-COV-2 RNA的纵向,定量的粪便脱落数据,以及常用的粪便指标胡椒轻度斑驳病毒(PMMOV)RNA和Crass-like-Phage(Crassphage)DNA。来自48个SARS-COV-2感染者的脱落轨迹表明,SARS-COV-2 RNA粪便脱落的高度个性化的动态过程。提供了至少三个跨越超过14天的粪便样品的个体,有77%的个体有一个或多个样品对SARS-COV-2 RNA呈阳性。,我们在所有个体的至少一个样本中检测到PMMOV RNA,总体上96%(352/367)的样本中检测到了PMMOV RNA。crassphage DNA,并在所有样品的48%(179/371)中检测到。所有个体的粪便中PMMOV和Crassphage的几何平均浓度均为8.7×10 4
niemann - pick型(NPC)疾病是一种罕见的进行性溶酶体脂质储存障碍,表现出具有临床综合症的异质谱,包括内脏,神经系统和精神症状。这种单基因常染色体隐性疾病主要是由控制细胞内脂质稳态的NPC1基因中的突变引起的。囊泡介导的内糖体脂质运输和通过轨道间膜接触位点通过孔间膜接触位点的非西西脂质交换。NPC1功能的丧失会触发各种脂质物种的细胞内积累,包括胆固醇,糖磷脂,鞘磷脂和鞘氨醇。NPC1介导的脂质转运功能障碍对所有脑细胞都有严重的后果,从而导致神经变性。除了神经元NPC1的细胞自主贡献外,其他脑细胞中异常的NPC1信号对于病理至关重要。我们在这里讨论NPC病理学中神经元,少突胶质细胞,星形胶质细胞和小胶质细胞之间的内染色体功能障碍和Atight串扰的重要性。我们坚信,特定细胞的救援可能不足以抵消NPC病理的严重程度,而是针对常见机制(例如内部溶酶体和脂质运输功能障碍)可能会改善NPC病理学。本文是讨论会议问题的一部分,“理解神经变性中的内聚糖网络”。