描述:成人斑马鱼模型的神经行为和生理数据的数据库,通过为斑马鱼遗传信息提供了可用的存储库,通过提供动态的,开放的访问数据存储库,这些数据库是全面的,经过精心策划的Zebrafish Neurobafish Neurobobehavioral实验的结果收集的。截至2012年5月,它包含超过4500多个实验结果,来自75多种独特的生理和行为测试以及330种不同的药物治疗。ZNP结合了该领域发表的工作的经过验证和策划的数据,以提高对使用成人斑马鱼模型有兴趣的研究人员的当前知识的可访问性。总体而言,该计划将允许研究人员快速审查数据,并使用这些模型指导他们的研究。数据和协议提交现在正在接受。
CRISPR/Cas9 基因组编辑技术极大地促进了多种生物体内和体外基因的靶向失活。在斑马鱼中,只需将向导 RNA (gRNA) 和 Cas9 mRNA 注射到单细胞阶段胚胎中,即可快速生成敲除系。在这里,我们报告了一种简单且可扩展的基于 CRISPR 的载体系统,用于斑马鱼的组织特异性基因失活。作为原理证明,我们使用带有 gata1 启动子的载体来驱动 Cas9 表达,以沉默与血红素生物合成有关的 urod 基因,特别是在红细胞谱系中。Urod 靶向在斑马鱼胚胎中产生了红色荧光红细胞,重现了在 yquem 突变体中观察到的表型。虽然 F0 胚胎表现出嵌合基因破坏,但这种表型在稳定的 F1 鱼中似乎非常明显。该载体系统构成了空间控制基因敲除的独特工具,大大拓宽了斑马鱼功能丧失研究的范围。
摘要:斑马鱼已成为研究人类许多生理和病理生理过程的流行模型。近年来,它在代谢性疾病(即肥胖和糖尿病)的研究中迅速出现,因为葡萄糖和脂质稳态的调节机制和代谢途径在纤维中是高度保守的。斑马鱼也被广泛用于神经科学领域,以研究由于成年期间神经干细胞的高维持和活性而导致的大脑可塑性和再生机制。最近,大量证据表明,代谢性疾病可以改变脑稳态,导致神经炎症和氧化应激,并导致神经发生降低。迄今为止,这些病理代谢疾病也是认知功能障碍和神经退行性疾病发展的风险因素。在这篇综述中,我们第一个旨在描述斑马鱼中建立的主要代谢模型,以证明它们与各自的哺乳动物/人类的相似之处。然后,在第二部分中,我们报告了代谢性疾病(肥胖和糖尿病)对脑体内平衡的影响,特别关注血脑屏障,神经障碍,炎症,氧化应激,认知功能和大脑形象。最后,我们提出了探索有趣的信号通路和调节机制,以便更好地了解代谢性疾病如何对神经干细胞活性产生负面影响。
o对于新的ZDNA吸收设备,立即显示存在图标;大约10分钟后,“最后连接”状态将更新。o对于在第三方EMM系统中注册的设备,在24小时内启用了设备的存在。o对于现有的ZDNA注册设备,执行“ Update ZDNA客户端”操作后显示出存在状态;大约10分钟后,“最后连接”状态将更新。o设备具有过时的“ DNA客户端”(由黄色三角形表示)必须更新到最新的客户端以查看在场信息。o在不支持的OS上运行的现有和新添加的设备仅在设备更新为最新OS(在“ Android更新”部分中)并更新为最新的ZDNA客户端后,才显示出存在状态。o在大多数情况下,存在从离线变为在线变化,但最多可能需要五分钟。o在设备中记忆杀死的情况下,从线到离线的变化可能需要长达16分钟。•使用高级设置时,导出为.pdf文件时不支持流配置。(请参阅UI配置>卷UI配置文件>卷UI配置文件>流配置)•首次启动(或从冷启动或硬重置中重新启动)时,所有运行Android 13(或更高版本)的Zebra设备必须已解锁(或使用PIN,密码或图案)在DNA云客户端应用程序之前启动。还适用于运行Android11。•运行Android 11的SDM660设备:DNA云不支持以下设备-OS更新软件包:
我的研究项目探讨了 hmx3a 在斑马鱼脊髓发育中的作用。hmx3a 是一个转录因子基因,这意味着它编码的转录因子蛋白能够结合 DNA 的特定区域,并通过促进或阻止 RNA 聚合酶将 DNA 转录成 mRNA 来促进或抑制其表达。之前的实验室研究已经证实,hmx3a 是斑马鱼脊髓中背部 dI2 中间神经元亚群正确分化所必需的。更具体地说,hmx3a 表达的降低或抑制与 dI2 细胞中神经递质的命运从兴奋性转变为抑制性有关。正常(野生型)dI2 细胞通过释放兴奋性/谷氨酸能化学神经递质进行通讯,这会增加接收细胞产生动作电位的可能性。而转换为抑制性神经递质表达(GABA 能或甘氨酸能)则会降低突触后细胞产生动作电位的可能性。由于神经递质表达的改变,我们预测 dI2 细胞不再在神经回路中正常发挥作用,这将对中枢神经系统内的感觉知觉产生重大影响。
摘要:成人神经发生是所有脊椎动物中发生的进化保守过程。然而,考虑到构成和损伤引起的条件下的神经源性壁ni,神经干细胞(NSC)身份,神经干细胞(NSC)身份以及大脑可塑性之间观察到明显的差异。斑马鱼已成为研究成人神经发生涉及的分子和细胞机制的流行模型。与哺乳动物相比,成年斑马鱼显示出大脑分布在整个大脑中的大量神经源性壁ni。此外,它表现出强大的再生能力,没有疤痕形成或任何明显的残疾。在这篇综述中,我们将首先讨论有关(i)成年斑马鱼和哺乳动物(主要是小鼠)和(ii)主脑脑脑壁iches中神经干细胞的性质的神经源性壁ches的分布。在第二部分中,我们将描述斑马鱼和小鼠端脑损伤后发生的一系列细胞事件。我们的研究清楚地表明,大多数早期事件发生在斑马鱼和小鼠之间,包括细胞死亡,小胶质细胞和少突胶质细胞募集,以及损伤引起的神经发生。在哺乳动物中,受伤后的后果之一是形成了持续存在的神经胶质疤痕。在斑马鱼中不是这种情况,这可能是斑马鱼表现出更高再生能力的主要原因之一。
药理学实验表明,神经肽可以有效调整神经元活性并调节运动输出模式。但是,它们在塑造先天运动方面的功能通常仍然难以捉摸。例如,先前已证明生长抑素在脑室中注射时会诱导运动,但是当在体外沐浴在脊髓中时,可以抑制虚拟的运动。在这里,我们通过在斑马鱼中淘汰生长抑素1.1(SST1.1)来研究生长抑素在先天运动中的作用。我们在数百个突变体和对照兄弟姐妹幼虫中自动化并仔细分析了数十万次爆发的运动运动学。我们发现SST1.1的缺失不会影响声学 - 卵形逃生反应,而是导致异常探索。SST1.1突变幼虫在更高速度的距离上游动并进行更大的尾弯,表明生长抑素1.1抑制了自发的运动。我们的研究完全表明,生长抑素1.1天生有助于减慢自发的运动。
环境中纳米塑料(NP)和微塑料(MP)的存在被认为是全球规模的问题。由于其疏水性和较大的特异性表面,NP和MP可以吸附其他污染物,作为多环芳烃(PAHS),并调节其生物利用度和危害。成年斑马鱼暴露3和21天,至:(1)0.07 mg/l NP(50 nm),(2)0.05 mg/l MPS(4.5μm),(3)MPS,带有水的油的吸附油化合物(WAF)的浓度(WAF)的浓度(WAF),均与含有戒指的香油(MPS-WAF),(MPS-WAF),(MPS-WAF),(4)MPS(4)MPS(4) (MPS-B(A)P),(5)5%WAF和(6)21μg/L B(a)p。在接近微绒毛的肠腔中可以看到类似NP的电义颗粒。MP在肠腔中大量发现,但未内化到组织中。21天后,NPS引起CAT的显着下调,GPX1A和SOD1的上调,而MPS上调CYP1A并增加了肝脏真空的患病率。在ill中未观察到组织病理学改变。在这项研究中,受污染的MPS并未增加斑马鱼的PAH水平,但结果强调了塑料颗粒的潜在差异影响,这取决于其大小,因此必须紧急解决真实环境NP和MPS的生态毒理学影响。
在胚胎时期,神经元通信在建立具有神经元兴奋性的突触之前就开始了,此处称为胚胎神经兴奋性(ENE)。ene已被证明可以调节发展转录程序的展开,但是并非全部了解开发生物的全球后果。在这里,我们监测了Ze-Brafish胚胎端脑中的钙(Ca 2 1),作为ENE评估瞬时药理处理疗效增加或减少ENE的疗效的代理。在胚胎周期结束时增加或减少ENE分别促进了多巴胺(DA)神经元的数量减少或减少。这种多巴胺能规范的可塑性发生在斑马鱼幼虫的下降(sp)中,后6 d后(DPF)在相对稳定的VMAT2阳性细胞中。非巴氨基能VMAT2阳性细胞构成了可以由ENE募集的DA神经元的储备库的无静止的生物标记。调节ENE在处理结束后几天还影响了幼虫运动。尤其是,ENE从2 DPF的增加增加了幼虫在6 dpf时的超塑,让人联想到斑马鱼内跨表型报道了注意力不足多动障碍(ADHD)。这些结果为识别可能干扰ENE的环境因素以及研究将ENE与神经递质规范联系起来的分子机制提供了方便的框架。
对称性与您的仓库管理系统(WMS)无缝集成,根据大小,位置,优先级和其他因素进行评估,批处理和分配订单。随后将优化的旅行分配给团队,最大程度地提高了选拔密度,同时最大程度地减少了仓库地板上的交通拥堵。绩效会随着时间的推移而提高,以响应数据驱动的见解和采摘者报告的例外。结果是仓库操作,每个动作都是有目的的,每个任务都以精确完成,生产力达到了高峰。