PAN 是一种无线通信系统,允许人体上和人体附近的电子设备通过近场静电耦合交换数字信息。信息通过调制电场和静电(电容)耦合皮安电流进入人体来传输。人体将微小电流(例如 50 pA)传导至安装在身体上的接收器。环境(“室内地面”)为传输信号提供返回路径。使用低频载波(例如 330 kHz),因此不会传播能量,从而最大限度地减少远程窃听和邻近 PAN 的干扰。数字信息使用带正交检测的开关键控来传输,以减少杂散干扰并提高接收器灵敏度。使用模拟双极斩波器和积分器作为正交检测器,并使用微控制器进行信号采集,实现了低成本(<20 美元)半双工调制解调器。PAN 中使用的技术可以集成到定制 CMOS 芯片中,以达到最小尺寸和成本。
· 易于操作 – 一个控制卡可用于 PROFINET、以太网/IP 和 EtherCat(简单切换总线协议)或 ASi · 为 RollerDrive 提供独立电源 · 更换时即插即用 – 无需寻址或配置 · 所有功能和 I/O 的状态显示均采用 LED · 用于零压力累积输送的集成逻辑,包括初始化 · 使用证书进行安全通信:PROFINET 一致性 B 类、以太网/IP ODVA 一致性、EtherCat 一致性 · 通过 PLC、Web 浏览器菜单和示教方法配置:– RollerDrive 的速度、旋转方向、启动和停止斜坡 – 传感器属性 – 计时器 – 错误处理 – 逻辑(单个/序列释放)· UL 认证 · 通过制动斩波器限制电压 · 可变过程图像用于优化 MultiControl 和 PLC 之间传输的数据量 · 通信线路屏蔽的功能接地 · 电压供应的极性反接保护 · 输入和输出电压供应的短路保护设计
摘要:可再生能源在追求可持续和环保的电力解决方案中发挥着关键作用。它们在提供环境效益的同时,也带来了固有的挑战。光伏系统依赖于周围条件,风力发电系统要应对变化的风速,燃料电池既昂贵又低效。此外,可再生能源 (RES) 注入的能量表现出不可预测的行为。为了解决这些问题,研究人员采用了各种电力电子设备和转换器,如逆变器、电能质量滤波器和 DC-DC 斩波器。其中,DC-DC 转换器因有效调节直流电压和提高 RES 效率而脱颖而出。精心选择合适的 DC-DC 转换器,再加上高效的控制技术,会显著影响整个电力系统的性能。本文介绍了一种设计 DC-DC 转换器开关控制器的新方法,专门用于可再生能源系统。所提出的控制器利用复合切换李亚普诺夫函数 (CSLF) 的强大功能来提高 DC-DC 转换器的效率和性能,解决可再生能源带来的独特挑战。通过全面的分析和仿真,本研究证明了该控制器在优化电力传输、提高稳定性和确保在各种可再生能源环境中可靠运行方面的有效性。此外,还介绍了小型 DC-DC 转换器实验的结果,以确认和验证所提方案的实际适用性。
摘要 干电极的使用正在迅速增加。由于干电极的阻抗很高,因此在电极和放大器之间的连接节点处有一个高阻抗节点。这会导致吸收电力线信号,而高 CMRR 放大器对于消除这种情况至关重要。在本文中,我们提出了一种具有高 CMRR 的低功耗低噪声斩波稳定放大器。为了最大限度地降低输入参考噪声,采用了基于反相器的差分放大器。同时,设计了一个直流伺服环路来抑制电极的直流偏移。由于所有级都需要共模反馈,因此每个放大器都使用了合适的电路。此外,在最后一级实施了斩波尖峰滤波器以衰减斩波器的尖峰。最后,为了消除失配和后期布局造成的偏移效应,采用了直流偏移抑制技术。设计的电路采用标准 180 nm CMOS 技术进行仿真。设计的斩波放大器在 1.2 V 电源下仅消耗 1.1 l W。中频带增益为 40 dB,带宽为 0.5 至 200 Hz。其带宽内的总输入参考噪声为 1 l V rms。因此,设计电路的 NEF 和 PEF 分别为 2.7 和 9.7。为了分析所提出的斩波放大器在工艺和失配变化下的性能,进行了蒙特卡罗模拟。根据 200 次蒙特卡罗模拟,CMRR 和 PSRR 分别为 124 dB(标准偏差为 6.9 dB)和 107 dB(标准偏差为 7.7 dB)。最终,总面积消耗为 0.1 mm 2(不含焊盘)。