参考:1。Song,W.,Wang,G.,Chen,L。等。1995。“一种由水稻疾病抗性基因xa21编码的受体激酶样蛋白。”科学。270:1804-1806。2。Beutler,B.,Jiang,Z.,Georgel,P。等。2006。“宿主电阻的遗传分析:通行器样受体信号传导和免疫力。”安努。修订版免疫。24:353-389。3。Ausubel,F。2005。“植物和动物的先天免疫信号通路是否保守?”自然免疫。6(10):973-979。4。Didierlaurent,A.,Simonet,M。和Sirard,J-C。 2005。“先天和获得肠道免疫系统的可塑性。”细胞和分子生命科学。62:1285-1287。5。Stahl,P。和Ezekowitz,R。1998。“甘露糖受体是涉及宿主防御的模式识别受体。” Curr。opin。免疫。10(1):50-55。6。Spurlock,M.,1997年。“在免疫挑战期间的代谢和生长调节:细胞因子功能的概述。” J. Anim。SCI。 75:1773-1783。 7。 Gabler,N。和Spurlock,M.2008。 “将免疫系统与增长和效率的调节整合在一起。” J. Anim。 SCI。 86:E64-E74。 8。 Korver,D。2006。 “消化系统的免疫动力学概述。” J. Appl。 家禽res。 15:123-135。 9。 Klasing,K.2007。 poult。SCI。75:1773-1783。7。Gabler,N。和Spurlock,M.2008。“将免疫系统与增长和效率的调节整合在一起。” J. Anim。SCI。 86:E64-E74。 8。 Korver,D。2006。 “消化系统的免疫动力学概述。” J. Appl。 家禽res。 15:123-135。 9。 Klasing,K.2007。 poult。SCI。86:E64-E74。 8。 Korver,D。2006。 “消化系统的免疫动力学概述。” J. Appl。 家禽res。 15:123-135。 9。 Klasing,K.2007。 poult。86:E64-E74。8。Korver,D。2006。“消化系统的免疫动力学概述。” J. Appl。家禽res。15:123-135。9。Klasing,K.2007。poult。“营养和免疫系统。” br。SCI。 48(5):525-537。 10。 Daskiran,M.,Teeter,R.,Fodge,D。和Hsiao,H.2004。 “对β-d-甘露酶Hemicell™的评估对β-甘露含量不同的饮食中肉鸡性能和能量使用的影响。”家禽科学。 83:662-668。 11。 Poulsen,K。Hemicell对44种经验分析的肉鸡中肠道健康的影响。 文件中的数据。 12。 Vangroenweghe,F.,Poulsen,K。&Thas,O。补充β-甘露酶酶在替代饮食中降低了在仔猪中使用后腹泻和抗生素的使用,并使用额外的大豆粉减少。 PORC Health Manag 7,8(2021)。 https://doi.org/10.1186/s40813-021-00191-5(ref-13331)13。 H.-Y.,Anderson,D.M。,Jin,F.L。和Mathis,G.F。 2004。 “β-甘露酶(Hemicell®)在感染坏死肠炎的肉鸡中的功效。 国际家禽科学论坛,摘要120,南部鸟类疾病会议。 14。 Vangroenweghe,F。&Poulsen,K。2020。 在有挑战性的蛋白质来源的情况下,β-甘露酶酶的Hemicell HT(一种β-甘露酶)的应用恢复了断奶后的仔猪的性能。 文件中的数据。 15。 Elanco试用号Elade140114。 2014。 在德国肉鸡整合中,在商业条件下对Hemicell-L的结果分析。 文件中的数据。 16。 Lee,J。,Bailey,C。和Cartwright,A。 2003。 82:1925-1931。 17。 ©2023 Elanco或其分支机构。SCI。48(5):525-537。10。Daskiran,M.,Teeter,R.,Fodge,D。和Hsiao,H.2004。“对β-d-甘露酶Hemicell™的评估对β-甘露含量不同的饮食中肉鸡性能和能量使用的影响。”家禽科学。83:662-668。11。Poulsen,K。Hemicell对44种经验分析的肉鸡中肠道健康的影响。文件中的数据。12。Vangroenweghe,F.,Poulsen,K。&Thas,O。补充β-甘露酶酶在替代饮食中降低了在仔猪中使用后腹泻和抗生素的使用,并使用额外的大豆粉减少。PORC Health Manag 7,8(2021)。https://doi.org/10.1186/s40813-021-00191-5(ref-13331)13。H.-Y.,Anderson,D.M。,Jin,F.L。和Mathis,G.F。 2004。 “β-甘露酶(Hemicell®)在感染坏死肠炎的肉鸡中的功效。 国际家禽科学论坛,摘要120,南部鸟类疾病会议。 14。 Vangroenweghe,F。&Poulsen,K。2020。 在有挑战性的蛋白质来源的情况下,β-甘露酶酶的Hemicell HT(一种β-甘露酶)的应用恢复了断奶后的仔猪的性能。 文件中的数据。 15。 Elanco试用号Elade140114。 2014。 在德国肉鸡整合中,在商业条件下对Hemicell-L的结果分析。 文件中的数据。 16。 Lee,J。,Bailey,C。和Cartwright,A。 2003。 82:1925-1931。 17。 ©2023 Elanco或其分支机构。H.-Y.,Anderson,D.M。,Jin,F.L。和Mathis,G.F。 2004。“β-甘露酶(Hemicell®)在感染坏死肠炎的肉鸡中的功效。国际家禽科学论坛,摘要120,南部鸟类疾病会议。14。Vangroenweghe,F。&Poulsen,K。2020。在有挑战性的蛋白质来源的情况下,β-甘露酶酶的Hemicell HT(一种β-甘露酶)的应用恢复了断奶后的仔猪的性能。文件中的数据。15。Elanco试用号Elade140114。2014。在德国肉鸡整合中,在商业条件下对Hemicell-L的结果分析。文件中的数据。16。Lee,J。,Bailey,C。和Cartwright,A。 2003。 82:1925-1931。 17。 ©2023 Elanco或其分支机构。Lee,J。,Bailey,C。和Cartwright,A。2003。82:1925-1931。17。©2023 Elanco或其分支机构。“β-甘露酶可以改善饲喂瓜尔菌和船体级分的肉鸡生长抑郁症。”家禽科学。Hemicell Emea Field Experience Elanco UK AH Limited,一楼,表格2,Bartley Way,Bartley Wood商业公园,Hook RG27 9XA。电话:01256 353131电子邮件:elancouk@elanco.com Hemicell,Elanco和对角线徽标是Elanco或其分支机构的商标。准备日期:04/2023 PM--UK-21-0567
术语定义抗微生物杀死微生物或停止其生长的药物。抗生素有时与抗菌剂但严格定义的抗生素使用,抗生素仅是指自然产生的剂,不包括合成化合物。抗菌剂将在本文档中使用。抗菌管理是指旨在促进抗微生物剂的最佳使用的协调干预措施,包括决定使用它们,药物选择,给药,剂量,路线和给药时间。伴侣动物包括一只家狗,猫,兔子(除了供人类食用的兔子外),一只小啮齿动物,笼子鸟,鸽子鸽子,玻璃容器和水族馆鱼类或均衡的量子,被声明不打算用作人类食用的食物。培养和易感性(C&S)是指允许鉴定出微生物的疾病的微生物实验室技术,并确定哪些抗菌剂鉴定出的微生物易于体外(哪些抗微生物是有效的,抗微生物)。氧化对象治疗一组没有疾病证据的动物,这些动物与确实有传染病证据的其他动物密切接触。食物生产动物的动物是牛,辣椒,卵巢或猪,家禽,兔子,鹿,鱼类或蜜蜂的动物,如果这种兔子,鹿或鱼类旨在用作人类食用的食物,或者用于人类食用食物,或者用于用作人类食用的食物。“关闭标签”在产品文档和特定产品特征(SPC)表中指定的营销授权条款之外使用药物;有时被称为“应用级联反应”抗菌剂对具有传染病的高风险的动物(但没有当前疾病,在群或羊群中没有已知疾病)。预防症预示着感染的风险增加。这种情况的例子包括动物的运输,年轻动物的断奶以及将动物局限于小的,拥挤的空间。兽医处方是由注册兽医从业者发出的电子或物理文件,该文件针对其护理下的动物,该动物提供给动物的动物疗法。
外周和中枢神经系统的髓鞘形成对于调节运动、感觉和认知功能至关重要。由于髓鞘形成在生命早期迅速发生,新生儿早期定植期间的肠道菌群失调可能会通过失调免疫反应和神经元分化来改变正常的髓鞘形成。尽管儿童中普遍使用抗生素 (Abx),但新生儿 Abx 诱导的菌群失调对微生物群、肠道、大脑 (MGB) 轴发育(包括髓鞘形成和行为)的影响尚不清楚。我们假设新生儿 Abx 诱导的菌群失调会失调宿主-微生物相互作用,损害大脑髓鞘形成并改变 MGB 轴。从出生后第 7 天 (P7) 到断奶 (P23),每天用 Abx 混合物 (新霉素、万古霉素、氨苄西林) 或水 (载体) 口服管饲新生儿 C57BL/6 小鼠以诱导肠道菌群失调。在成年小鼠(6-8 周)中进行了行为(认知;焦虑样行为)、微生物群测序和 qPCR(回肠、结肠、海马和前额叶皮质 [PFC])。新生儿 Abx 给药导致成年期肠道菌群失调、肠道生理受损,同时伴有细菌代谢物紊乱和行为改变(认知缺陷和抗焦虑行为)。在接受 Abx 治疗的小鼠的 PFC 区域中,对少突胶质细胞很重要的髓鞘相关基因(Mag、Mog、Mbp、Mobp、Plp)和转录因子(Sox10、Myrf)的表达显著增加。免疫荧光成像和蛋白质印迹分析证实了髓鞘形成增加,表明与成年期假手术对照组相比,新生儿 Abx 治疗的小鼠的 MBP、SOX10 和 MYRF 表达增加。最后,在完成 Abx 治疗后服用短链脂肪酸丁酸盐可恢复肠道生理、行为和髓鞘形成障碍,表明肠道微生物群在介导这些影响方面发挥着关键作用。总之,我们发现新生儿 Abx 给药对 MGB 轴具有长期影响,特别是对
电子邮件:zeguedescrizant@gmail.com摘要我们报告了一个自闭症谱系障碍(ASD)的情况,他们在使用利培酮来烦躁和侵略性行为后,出现了神经肌肉吞咽困难,其特征是躁动,焦虑,焦虑和加重的易不易度,归因于药物的副作用。鉴于此,从事药物的断奶开始了,在此期间观察到了行为症状的严重恶化,由于病情的强度引起了人们的关注。完全悬浮后,症状持续了几周。但是,只有在一个月之后,孩子才显示出显着改善,突出了谨慎的茶抗精神病患者的重要性。关键字:神经肌动症烦躁不安,中断综合征,各种效果。摘要我们报告了一个自闭症谱系障碍(ASD)的情况,他们在使用利培酮来管理易怒和侵略性行为后,开发神经肌动症烦躁不安,以搅动,焦虑和加剧的刺激性为特征(药物的副作用。因此,启动了药物的逐渐缩小,在此期间观察到了行为症状的显着作用,从而引起了由于病情严重程度而引起的关注。完全停用后,症状持续了七个星期。但是,只有在没有药物治疗的一个月之后,孩子才显示出显着改善,强调了对ASD仔细管理抗精神病药的重要性。关键字:神经肌动症,停用综合征,其他影响。 div>摘要我们报道了一个自闭症谱系障碍(ASD)的病例,在使用利培酮来治疗易怒和侵略性行为后,发展为神经肌动症的烦躁不安,其特征是躁动,焦虑和加剧的烦恼,并将其归因于药物的次要作用。 div>鉴于此,该药物的逐渐减少开始,在此期间观察到行为症状的严重恶化,由于绘画的强度引起了人们的关注。 div>完全悬浮后,症状持续了几周。 div>然而,仅在一个月没有药物治疗之后,孩子才取得了重大改进,强调了对ASD仔细管理抗精神病药的重要性。 div>关键字:神经肌动症,停用综合征,各种效果。 div>
摘要:对人工智能系统用于母猪发情检测的评估 Steven Verhoeven 1,5、Ilias Chantziaras 2、Elise Bernaerdt 1、Michel Loicq 3、Ludo Verhoeven 4 和 Dominiek Maes 1 1 比利时根特大学兽医学院猪健康管理系;2 比利时根特大学兽医学院内科系;3 noHow,比利时;4 荷兰埃因霍温;5 现地址:荷兰 Lintjeshof 要点: 安装了人工智能 (AI) 系统的三个比利时母猪养殖场(A、B 和 C)被用于研究这种 AI 系统是否有助于优化授精时机。 在农场 A,实施人工授精系统后,所有评估参数都显著改善(分娩率 + 4.3%、重复配种率 - 3.75%、首次授精后分娩率 + 6.2%、每窝产仔数 + 1.06 头)。 在农场 B,实施人工授精系统前后唯一具有统计学意义的差异是每窝产仔数(-0.48 头),而在农场 C,这一参数显著增加了 0.45 头。 简介 母猪发情检测对于预测最佳授精时机至关重要。在商业养殖场,农民通常根据母猪的行为迹象通过视觉检测发情。然而,这些迹象在母猪之间差异很大,而且发情持续时间很难提前预测。因此,每次发情进行多次授精以优化生育结果是一种方法。这种策略既费时又会产生额外成本。如今,已经开发出使用连接传感器和摄像头来持续监测行为数据的技术创新来检测母猪的发情。随后,人工智能(AI)系统对收集到的行为数据进行分析。这项研究调查了这种人工智能系统是否可以帮助生产者优化授精时机和繁殖性能。材料和方法安装了人工智能系统(SmaRt Sow Breeding (SSB))的三个比利时商业母猪农场(A、B 和 C)参与了这项研究。SSB 系统通过安装在母猪上方箱子上的摄像头持续收集繁殖单元中每头母猪的行为数据。该算法使用收集到的母猪活动模式来预测每头母猪的最佳授精时机,并在用户界面上显示授精请求。建议使用该系统的农民:1)每天用诱捕公猪进行一次发情检测,并指明进行发情检测的时间; 2)每天最多给母猪喂食两次,并在固定的时间喂食,使系统能够区分与进食相关的行为和与发情相关的行为;3)尽可能保持授精装置安静,以将母猪表现出与发情无关的任何异常行为的风险降到最低,并使系统更容易检测到发情信号。该系统设计用于断奶母猪,而不是母猪,因为它们的行为变化太大,难以可靠地评估。因此,本研究未包括母猪的表现。在参与研究的三个农场中,包括了实施该系统之前 1.5 年和之后 1.5 年的生殖周期(n = 6717)。参数包括:(1)分娩率(FR),(2)重复繁殖者百分比(RB),(3)第一次授精后的分娩率(FRFI)和(4)每窝总产仔数(NTBP)。此外,还分析了系统收集的数据以描述断奶至发情间隔 (WEI)、发情持续时间 (ED) 和每次发情的授精次数。该数据集包括在农场 B 和 C 收集的 2261 个周期。结果与讨论在农场 A,所有参数均显著改善,即 FR + 4.3%、RB - 3.75%、FRFI + 6.2% 和 NTBP + 1.06 头仔猪。在农场 B,NTBP 显著下降,为 0.48 头仔猪,但该农场的授精剂量较低(每剂 0.8 × 10 9 个精子)。在农场 C,实施该系统后,只有 NTBP 显著增加,为 0.45 头仔猪。系统确定的 WEI 在 78 到 90 小时(h)之间变化,比农民确定的 WEI 短 10-20 小时。系统确定的 ED 范围为 48 至 60 小时,与农民评估的 ED 相比变化较小。在农场 B,只有 NTBP 的差异具有统计学意义,即 - 0.48 头仔猪。FR 和 FRFI 有所改善,而 RB 有所增加(p > 0.05)。农场 B 每次发情的平均授精次数随时间保持相似,而农场 C 每次发情的平均授精次数随时间从大约 1.6-1.2 减少。这项研究表明,用于母猪发情检测的实时人工智能系统可以帮助农民确定最佳授精时机,如果使用得当,可以提高农场的繁殖性能。繁殖性能的总体结果是积极的,但由于农场管理的差异,每个农场的结果各不相同。除了正确的发情检测外,管理、遗传、饲料、健康状况和精子质量等其他因素对于增加成功受孕的机会也非常重要。这些因素可能在某种程度上影响了结果,例如,由于基因改良,产仔数增加。结论 AI 系统可以帮助农民提高繁殖性能、评估发情特征并减少每次发情的授精次数。由于农场管理、遗传学和授精剂量等许多其他变量也会影响繁殖性能,因此不同农场的结果可能有所不同。完整出版物可在 https://doi.org/10.1186/s40813‐023‐00303‐3 上找到。
我希望我们在霜冻之前收到一些急需的降水,以改善牧场条件。但是,缩短的日长度和挥之不去的霜冻将限制饲料的产生。制定您的计划并准备采取行动,而不是希望下周下雨。重新思考高风险的储藏罐管理米歇尔·阿诺德(Michelle Arnold)博士 - DVM,MPH英国反刍动物扩展兽医牛呼吸疾病(“ BRD”)或“运输发烧”或“运输发烧”,也称为支气管内肿瘤,也称为Posteaned(Stocker)Calves的疾病和死亡的最常见原因(当时的疾病),但在packeined(Stocker)calves中均具有巨大的污染。传统上,人们认为通过疫苗接种的疾病预防是改善Stocker健康结果的答案,但是由于发病率和死亡率继续上升,目前的疫苗接种建议并不能遇到挑战。越来越多的研究重点是上呼吸道中正常,健康的“微生物群”(细菌种群)的重要性,以维持小腿健康并提高免疫力。这种正常的微生物种群通过多种机制进行调节或对照,包括1)与养分的致病生物(不良错误)竞争,2)通过募集白细胞捍卫肺组织和4)抗体生产,以保护抗体的生产,专门针对病原体的生产,3)通过募集白细胞来保护肺泡,以保护抗体,以保护抗体,以保护抗体,以保护抗体,以促进抗体,以促进抗体,以促进抗体,以促进抗体,以促进抗体,以促进抗体,以保护MIGA,MIGA,MIGA,MIGA,MIGA,MIGA,MIGA。然而,被诊断为BRD的牛具有明显的破坏菌群,而相反,可致病的细菌蓬勃发展。检查在刺激免疫系统的同时保留正常微生物群的方法是目前正在勘探的新边界,以减少疾病,死亡损失和抗菌剂使用,尤其是在Stocker Calf部门。是时候限制对呼吸菌群产生深远影响的管理程序和治疗方法以改善高风险储藏箱的健康吗?Stocker行业对于肯塔基州的牛/小牛业务的经济成功至关重要。通过销售谷仓在农场上销售的小牛通常绝不是,形状或形式,准备进入饲料批量以喂食以屠宰体重。这些犊牛经常以小团体(有时是10只或更少的犊牛)到达船上的码头,这些犊牛是在拖车上断奶的。许多犊牛是轻量级(<400#),营养和微量矿物质状态差,未接种疫苗,男性是完整的公牛,一部分小母牛犊牛怀孕了。到达院子后,小牛与多个来源的小牛相称,大多数均具有未知的疫苗接种和驱虫史,然后称重,出售并最终运送到储藏室或背景
Managament of GM colonies 42,81 €/hour 85,62 €/hour 128,44 €/hour Senior Animal technician price per hour Surgery and treatments 42,81 €/hour 85,62 €/hour 128,44 €/hour Senior Animal technician price per hour Tail cut / Ear tag after weaning 1,57 €/animal 3,14 €/animal 4,71 €/动物易腐的物品和员工尾巴剪/耳条,在断奶3,14欧元/动物6,28€/动物9,42€/动物可腐烂的文章和员工接种。样品(工作日)4,32€/项目8,64€/项目12,96€/项目可腐烂的文章和员工接种。Samples (Saturdays & holidays) 8,64 €/item 17,28 €/item 25,92 €/item Perishable articles and staff Shaving transfer induction (workdays) 1,67 €/item 3,33 €/item 5,00 €/item Perishable articles and staff Shaving transfer induction (Saturdays & holidays) 3,33 €/item 6,67 €/item 10,00欧元/物品可腐烂的文章和员工周期控制未怀孕的插头(工作日)2,25欧元/女性4,50欧元/女性6,76€/女性员工员工周期无需怀孕检查(星期六和假期)4,50欧元/女性女性13,51欧元/女性员工的插件(4,50欧元/女性)3,51欧元/女性的工作量3 ,, 7,14欧元/女性10,72欧元/女员工周期的插头和体重控制(星期六和假期)7,14欧元/女性14,29€/女性21,43欧元/女性员工培养机构(工作日)3,57欧元/女性7,14°女性10,72€&prand Prenge) €/female 14,29 €/female 21,43 €/female Staff Gas anesthesia system usage (fractions of 30 min) 14,05 € 28,09 € 42,14 € Minor surgery (30 minutes) Cells or animal Irradiation < 10 Gy 9,54 €/item 19,09 €/item 28,63 €/item Staff, inspections and validations Cells or animal irradiation > 10 Gy 19,40 €/项目38,79€/项目58,19欧元/项目人员,检查和验证尸检,报告51,33欧元/小时102,65欧元/小时153,98€/小时的兽医每小时每小时血液分析价格分析(血液细胞计)10或更多样品,每天或更多样品,每天19,02€/item 38,04,04,04,04,04,04,06 c.分析(血细胞计)每天少于10个样本28,53€/项目57,06€/项目85,59€/项目可腐烂的物品和员工干细胞维护76,85欧元/年76,85€76,85€/年/行153,70欧元/年/年/年/年/年/年/年。
侵略性,以及一般的刻板印象行为,例如非果实哺乳,头部打击或自我伤害(Latham&Mason,2008)。母亲剥夺的这些影响可能是由于缺乏社会模型(即母亲(Fleming等,2002))以及缺乏母乳作为生物活性因素的来源(Bernstein&Hinde,2016年)而同时导致的。然而,挑战不是要隔离一个因素(母亲或牛奶)的影响,而是考虑“同样重要的母亲和非母性变量之间的动态相互作用”(Tang等,2014)。在绵羊(ovis aries)中,一种早熟的物种,很难将母体剥夺的影响与配方奶粉喂养的影响分解。每个都影响婴儿的发育。母乳和她的羔羊之间的互惠母亲 - 在生命的前12小时发生。它主要基于气味线索,其特点是对每个伴侣的个人认识和母亲和她自己的婴儿之间的护理排他性(Nowak等,1997,2011; Nowak&Poindron,2006)。在这种情况下,母亲对于羔羊的发育至关重要,这并不奇怪。但是,无母亲的饲养通常用于常规乳制品耕作,或者在其他情况下,如果母亲是非母亲,则羔羊过多或患有乳腺炎。尽管在绵羊种植方面具有普遍的做法,但涉及母亲剥夺,牛奶替代或早期断奶的早期饲养条件的影响会影响广泛的功能和行为。这些研究证明了母亲的剥夺和结束 -出生时,由于从母亲到羔羊的被动免疫转移,初乳对羔羊的生存很重要(Hernández-Castellano等,2015; Khan&Ahmad,1997; Nowak&Poindron,2006年)。与富含母体和商业奶的混合物相比,用商业牛奶替代品喂食的羔羊的免疫反应改变了(Sevi等,1999)。然而,在出生后几天被剥夺了母亲,而不是出生时,羔羊可以进入初乳,并大大降低了对免疫反应的影响,特别是如果随后用母羊的牛奶喂养(Napolitano,2003; Napolitano等,1995年)。在生命的头几周里,母亲是一个社会示威者的关键作用,影响了喂养的建立(Black-Rubio等,2007; Saint-Dizier等,2007; Thorhallsdottir等,1990)和双胞胎之间的社会偏好(Ligout&Porter,2004)或Appeasepe fy(Ligout&Porter,2004)或appeaseme ty Al caregiv al Al al Al an。 )。从长远来看,母亲的缺失对男性羔羊的性行为表达产生了负面影响(Damián等,2015,2018)。情感反应性在社会隔离环境中通过皮质醇血浆水平和行为反应评估,也受到母性剥夺的影响(Napoli- Tano,2003; Napolitano等,2002; Sevi等,1999)。另外,还报道了内分泌不平衡的性行为行为(Damián等,2015,2018),婴儿依恋(Gaudin等,2018)或营养(Berry等,2016)。
图 33. 南达科他州前 10 个县,农业和林业家庭收入 ............................................................................................................................. 35 图 34,南达科他州前 10 个县,农业和林业家庭收入百分比 ............................................................................................. 36 图 35,南达科他州各县,乙醇行业增加值 ............................................................................. 37 图 36,南达科他州各县,乙醇行业总增加值百分比 ............................................................. 37 图 37,南达科他州各县,乙醇行业就业岗位 ............................................................................. 38 图 38,南达科他州各县,乙醇行业总就业岗位百分比 ............................................................. 38 图 39. 南达科他州乙醇生产能力和位置 ............................................................................. 39 图 40. 南达科他州乙醇产量及美国产量份额 ............................................................................. 40 图 41. 南达科他州每蒲式耳玉米的乙醇、DDG 和 DCO 销售价值以及玉米成本 ...................................................................................................................................................... 43 图 42. 南达科他州每周乙醇生产利润率(玉米压榨价差)(美元/蒲式耳) ............................................................................................................. 43 图 43. 南达科他州运输部门的乙醇消费量和该州乙醇产量占比 ............................................................................................................. 44 图 44. 南达科他州生猪存栏量和美国生猪占比 ............................................................................................. 45 图 45. 南达科他州 12 月 1 日生猪存栏量按类别划分 ............................................................................. 46 图 46. 美国主要各州生猪存栏总量(2020 年 12 月 1 日,头) ............................................................................. 46 图 47. 南达科他州生猪存栏量按所选规模划分(12 月底) ............................................................................. 47 图 48. 南达科他州生猪存栏量按所选州规模划分的占比总库存(12 月底)..................................................................................................................................................... 48 图 49. 南达科他州按选定规模划分的生猪存栏农场数量(12 月底)......................................................................................................................... 49 图 50. 南达科他州按选定规模划分的生猪存栏农场数量(12 月底)..................................................................................................................... 49 图 51. 南达科他州各县的生猪养殖场数量(2017 年)......................................................................................... 50 图 52.南达科他州各地区生猪养殖场数量变化百分比(2012 年至 2017 年)。 51 图 53. 南达科他州各县生猪销售价值(2017 年).............................................................. 52 图 54. 南达科他州各县销售生猪数量(2017 年).............................................................. 53 图 55. 南达科他州生猪养殖场类型与规模(分娩到育肥,2017 年)............................................. 54 图 56. 南达科他州生猪养殖场类型与规模(分娩到育肥,2017 年)............................................. 54 图 57. 南达科他州生猪养殖场类型与规模(分娩到断奶,2017 年)............................................. 55 图 58. 南达科他州生猪养殖场类型与规模(独立种植者,2017 年)............................................. 55 图 59. 南达科他州生猪养殖场类型与规模(育肥场,2017 年)............................................. 56南达科他州按规模划分的生猪养殖场数量(1997-2017 年) .............................................................. 57 图 61. 南达科他州检验和定制牲畜屠宰量(2020 年) .............................................................. 58 图 62. 南达科他州奶牛存栏量和占美国奶牛存栏量的份额 ............................................................. 59 图 63. 部分州奶牛存栏量(1 月 1 日) ............................................................................. 60 图 64. 南达科他州按部分规模划分的奶牛存栏量(12 月底) ............................................................. 61
我从 1990 年开始使用人工授精,主要用于注册牛群,但在 2000 年代越来越多地用于商业牛群。它是一种很好的基因管理工具,可用于极大地改善您的牛群。但仍然有许多母牛犊养殖场像瘟疫一样避免使用它,原因很明显,它昂贵、管理和劳动密集、牛群规模很重要、牛通过溜槽的次数更多,等等。在人工授精和胚胎工作方面,我们在技术和管理方面已经取得了长足的进步。现在,随着性控精液的商业化供应,我们有了更多的选择和机会来说服商业牧场主,人工授精可以为他工作。乳制品行业一直在使用性控精液来生产后备小母牛。我相信我们都希望有机会培育出能为我们的牛群和利润带来好处的性别,现在你有了这个选择。这并不容易,也不会很快,但这项技术有一些有趣的方面。性别控制精液的优势在于,你可以根据自己的营销需求定制小牛产量。如果你是终端生产商,你可以对小母牛进行人工授精 (AI) 以产出更多的公牛犊。如果你有母系牛群,你可以通过人工授精获得更多的小母牛。如果你是种畜生产商,你可以通过人工授精让更多的公牛犊发育成种群公牛。在将性别控制精液商业化的早期,受孕率是一个真正的问题。专家表示,这种情况已基本消除,现在受孕率已接近传统人工授精的预期水平。除此之外,人工授精的缺点是它有一些管理限制,尤其是在商业牛群中。性别控制精液似乎对小母牛比对成年母牛更有效。这在很大程度上与管理母牛与小牛一起的固定时间或分时人工授精有关。人工授精和胚胎移植在注册养牛业中是行之有效的做法,性别控制精液在那里肯定是有意义的。目前,商业牛肉生产商对人工授精的使用率并不高,主要是因为牛群规模大,有些人喜欢传统的母牛繁殖方式。几年前,我有一个好朋友去世了,他为大型商业牛群做了很多人工授精工作。他说,2000 年代初他最大的客户是 Mt. 的 Broseco Ranch。普莱森特。有一段时间,他们对所有的商业奶牛和小母牛进行了人工授精。这确实值得深思!但当时他们没有机会使用性别控制精液。那么,通过改变小牛的性别来更好地优化利润潜力的前景是否会鼓励更多的商业牛肉生产商采用 AI?谁知道呢,但我认为使用这项技术肯定会增加利润潜力。对于饲养大量奶牛的养殖场来说,特别是在放养率较低、牧场面积较大的干旱地区,AI 是一项重大的管理工作,在这些地区可能不值得。现在,有很多养殖场对小母牛进行 AI,这样他们就可以使用具有良好生长 EPD 的产犊容易度公牛。现在,那些饲养后备小母牛的人可以使用来自顶级血统的具有良好 EPD 的性别控制精液来制造符合需求的产品。另一方面,如果您从事的是销售牛肉的业务,那么无论您是销售断奶小牛还是直接将它们送到铁路,性别控制精液都会让您受益匪浅。牛肉行业正在发生变化,我们许多人成长过程中的许多传统方法和思维方式可能正在逐渐减少或消失。有几个因素将决定 AI 和性别控制精液是否适合您,但一个主要因素可能是盈利能力和持久力!