基于形状描述符和几何注册的传统方法通常会在模棱两可的特征上遇到较低的精度。最近的数据驱动方法固有地受到训练模型的表示和学习能力的影响。为了解决这个问题,我们提出了一种受扩散模型和变压器启发的新颖方法。我们的方法利用了它们的全局特征相关性和姿势先前的学习能力,将通过变压器通过变压器进行扩散来预测每个片段的姿势参数。我们在断裂的对象数据集上评估我们的方法,并与最新方法相比表现出卓越的性能。我们的方法提供了一种有前途的解决方案,可用于重新组装准确,稳健的裂缝对象,以复杂的形状分析和组装任务来推进该领域。
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 9 月 9 日发布。;https://doi.org/10.1101/2024.09.09.612111 doi:bioRxiv 预印本
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年9月28日发布。 https://doi.org/10.1101/2024.09.27.615517 doi:biorxiv Preprint
图1:来自Operando XCT的实验设计和选定图像。(a)操作XCT细胞设计,成像和图像重建过程的示意图。(b)在0.5 mA CM -2电流密度,10 MPa堆栈压力和25°C下,在Operando XCT实验中循环的硅半细胞的电静态电压谱图。XCT图像是在第一次锂化之前和之后收集的,然后在划界和重新构度期间每15分钟收集一次。(c)从XCT数据中重建单元堆的3D渲染,突出显示了不同的2D切片。(d)垂直横截面图像显示了(i)原始的硅/LPSC界面,(ii)锂化,(iii)界定,(iii)截然不见,(iv)重新列为较高的状态,false-Color叠加层,突出显示了(I)中的硅和LPSC。(E-G)平面图像来自(e)锂化,(f)删除和(g)重新列为的硅电极中点的平面图像。
虽然近年来对有机热电聚合物的研究正在取得显着进步,但实现具有热电特性的单一聚合物材料和下一代自动可穿戴电子产品的可拉伸性是一项挑战的任务,并且仍然是尚未探索的领域。采用“共轭断裂器”的一种新的分子工程概念,以将可拉伸性赋予高度结晶的二基吡咯吡咯(DPP)基于基于的聚合物。A hexacyclic diindenothieno[2,3- b ]thiophene (DITT) unit, with two 4-octyloxyphenyl groups substituted at the tetrahedral sp3-carbon bridges, is selected to function as the conjugated breaker that can sterically hinder intermolecular packing to reduce polymers' crystallinity.因此,通过将晶体DPP单元与DITT共轭断路器聚合来开发一系列的供体 - 受体随机共聚物。通过控制单体DPP/DITT比率,DITT30达到了晶体/无定形区域的最佳平衡,在FECL 3后,表现出高达12.5μwm -1 K -2的特殊功率因子(PF)的价值;而,同时显示能够承受超过100%的应变的能力。更为明智的是,掺杂的Ditt30纤维具有出色的机械耐力,在200个伸展/释放周期以50%的应变为50%后,保留了其初始PF值的80%。这项研究标志着具有具有特殊热电特性的本质上可拉伸聚合物的开创性成就。
在石墨烯中,与量子大厅(QH)方向上的自旋和山谷自由度相关的近似SU(4)对称性在石墨烯Landau水平(LLS)的四重脱胶中反映了。相互作用和Zeeman效应打破了这种近似对称性并提高LLS的相应堕落性。我们研究了近似SU(4)对称的破裂如何影响位于超导体附近的石墨烯QH边缘模式的性质。我们展示了四倍变性的提升是如何定性地修改QH-螺旋导体异质结的运输特性。对于零LL,通过将边缘模式放置在靠近超导体的位置,从原则上讲,在存在较小的Zeeman Field的情况下,可以实现支撑Majoranas的一维拓扑超导体。我们估计了这种拓扑超导体的拓扑间隙,并将其与QH-Superconductor界面的性质相关联。
国家能源技术实验室部分通过现场支持合同。美国政府,其任何机构,其任何雇员,支持承包商,或其任何雇员既不对任何信息,设备,产品或程序所披露的任何法律责任或责任,或承担任何法律责任或责任,或者承担任何法律责任或责任,或者表示其使用均不将使用其使用,或者代表其使用不会侵权私人权利。在此引用以商业名称,商标,制造商或其他方式参考任何特定的商业产品,流程或服务。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
使用Trizol试剂(Invitrogen,Carlsbad,CA,美国)提取总RNA。使用Prime-Script RT试剂试剂盒(完美的实时,日本Takara)合成互补的DNA(cDNA)。3-磷酸甘油醛脱氢酶(GAPDH)用作内部对照基因,并使用2 – DDCT公式计算折叠诱导。使用SYBR Premix ex Taq进行定量实时PCR分析(日本Takara。Inc.目录编号DRR041A)(PCR协议:阶段1:早期讲述,重复:1;95℃30s阶段2:PCR反应,重复:40; 95℃5 s; 60℃30s阶段3:熔体曲线:熔体曲线:95℃15s; 60 s; 60 s; 60 s; 95 s; 95 s; 95 s;95℃15s)。使用了以下引物:ARID1A(F)5'-CTTCACTCAGTCAGCTCCCA-3',arid1a(r)5'-GGTCACCCCACCCTCATCTCATACTCCTTT-3',gapdh(f)5'-GGGTGGTGGTGGTGGTGGTGGTGGTGGTCTCTCTCTCTCTCCTGATCTCAACA-3',and gapdh(R) 5'-GTTGCTGCCCAAATTCGTTGT-3'。GAPDH用作内源性对照。每次三份重复每个样本,并使用相对定量软件(Applied Biosystems)分析。
关于 CSIR-SERC CSIR-结构工程研究中心 (CSIR- SERC),钦奈是印度科学与工业研究理事会 (CSIR) 下属的国家实验室之一。CSIR-SERC 拥有用于分析、设计和测试结构和结构部件的卓越设施和专业知识。中央和州政府以及公共和私营部门企业正在广泛寻求 CSIR-SERC 的服务。CSIR-SERC 的科学家在许多国家和国际委员会任职,该中心在国家和国际层面被公认为结构工程领域的领先研究机构。关于课程本课程提供疲劳和断裂基本概念的必要背景知识,包括抗疲劳部件和结构的设计。研讨会为工程专业人员提供了一个熟悉疲劳和断裂力学领域最新发展的机会。本课程将重点介绍金属结构部件疲劳和断裂的实验和数值技术。课程中将涵盖的主题包括:
1国家职业健康研究所,工作心理学研究小组,奥斯陆,奥斯陆,挪威2号职业与环境医学司,公共卫生科学系,卡罗林斯卡研究所,卡罗林斯卡研究所,瑞典,瑞典,瑞典3,职业和环境医学司,伦敦大学,伦敦伦敦市伦敦市伦敦市,丹麦4号,伦敦康涅狄格州伦敦市,第5次,丹麦克里克,伦德大学4号。南丹麦大学,丹麦的丹麦大学,丹麦6号挪威生物经济研究所,ÅS,挪威,挪威7号国家工作环境研究中心,肌肉骨骼疾病和身体工作量,丹麦哥本哈根,丹麦8号,工业经济学和技术管理系8 Trondheim,挪威