摘要:最近的研究表明,砂颗粒的断裂在确定不同载荷条件下颗粒材料的塑料体积变化方面起着重要作用。用于更好地了解颗粒断裂对颗粒材料行为的影响的主要工具之一是离散元素建模(DEM)。本文采用键合模型(BBM)来模拟沙子的断裂行为。使用线性平行的接触模型将每个砂粒子建模为在其接触处键合的刚性块的聚集体,该模型可以同时传递力矩和力。dem模拟的颗粒与使用高分辨率3D同步加速器微型计算机断层扫描(SMT)获得的实际三维(3D)形状的实际三维(3D)形状匹配。由单个合成二氧化硅立方体无限的一维(1D)压缩的结果用于校准模型参数。研究了由三个砂颗粒组成的样品,研究了颗粒裂缝,这些砂颗粒在受约束的1D压缩下加载。从DEM模型中测量的断裂能与实验测量的良好匹配。使用BBM研究了接触载荷条件和粒子相互作用的效果,使用BBM可以紧密捕获真实砂颗粒的3D形状。doi:10.1061/(ASCE)GT.1943-5606.0002281。这项工作可根据创意共享归因4.0国际许可的条款提供,https://creativecommons.org/licenses/4.0/。
专注于增材制造 通过 3D 打印熔融沉积建模制造的先进结构材料的局部尺度断裂表征 Joseph Marae Djouda ERMESS,EPF 工程学院,3 bis Rue Lakanal, 92330 Sceaux,法国 材料中心,MINES ParisTech,CNRS UMR 7633,BP 87,91003,埃夫里,法国 joseph.marae_djouda@epf.fr Donato Gallittelli、Marouene Zouaoui、Ali Makke、Julien Gardan ERMESS,EPF 工程学院,2 rue Fernand Sastre,特鲁瓦,法国 donato.gallitelli@gmail.com marouene.zouaoui@utt.fr almak_21@hotmail.com Julien.Gardan@epf.fr Naman Recho ERMESS,EPF 工程学院,3 bis Rue Lakanal, 92330 Sceaux,法国克莱蒙奥弗涅大学,帕斯卡研究所 CNRS-UMR 6602,PB 10448,63000 克莱蒙费朗,法国。 Naman.Recho@epf.fr Jérôme Crépin 材料中心,MINES ParisTech,CNRS UMR 7633,BP 87,91003,埃夫里,法国 jerome.crepin@mines-paristech.fr
汞合金的优点 ................................................................................................ 6 汞合金的缺点 ................................................................................................ 7 汞合金断裂的发生率 .............................................................................................. 7 当前关于汞合金修复体的文献 ...................................................................... 9 I.体外修复的汞合金结果 ............................................................................. 9 A. 剪切粘结强度评估 ............................................................................. 9 B. 修复体的微渗漏评估 ............................................................................. 16 C. 修复体的抗弯强度评估 ............................................................................. 19 D. 修复体的断裂强度评估 ............................................................................. 20 II.修复与更换修复体的临床寿命 ............................................................. 22 A. 回顾性研究 ............................................................................................. 23 B.临床研究 ............................................................................................. 24 III.表面处理方案和修复材料 ................................................................................31 A. 方案 ....................................................................................................31 B.系统评价 ................................................................................................36 C. 体外研究 ............................................................................................................37 D. 大体积填充树脂复合材料 ......................................................................................39 总结 .............................................................................................................................41 文献中的空白和未来需要的方向 .............................................................................41 3.材料和方法 .............................................................................................43
剥离层和碳纤维之间的环氧树脂断裂 • 产生新鲜的、化学活性的环氧树脂表面 剥离层织物纤维和环氧树脂基质之间的界面断裂 剥离层纤维断裂 层间失效
15. 补充说明 由船舶结构委员会赞助。由其成员机构共同资助。 16. 摘要 为提高成本和时间效率,海洋工业中断裂修复程序发展迅速。通过内部分析和审查行业标准以及 IACS 和 TSCF 等组织的建议,调查了当前评估和修复远洋船舶断裂的行业实践。在修复断裂过程中,需要考虑几个因素,例如位置、程度和可能的原因。审查了断裂报告和 IACS 文件以确定易发生断裂的结构区域。提出了一种基于预期功能和位置对结构部件故障进行分类的通用方案。这是为了就断裂修复的适当和及时的纠正措施提出建议。记录了各种断裂修复技术的要求和典型过程。还进行了行业标准与 USCG NVIC 7-68 之间的差距分析。 17. 关键词 NVIC 7-68、断裂修复方法、结构故障分类、
今天,在各个行业中,需要作为一般质量控制测试。已经制定了几种工业标准以准确执行测试。必须在夏比冲击测试中确定动态断裂能及其与半经验方程式与断裂韧性的关系。在本研究中,具有标准ASTM E23样本量的AZ31镁合金的夏比冲击试验是通过凹槽深度,温度和凹槽角对断裂能的影响来衡量的。Taguchi和L18阵列已用于设计实验并根据所研究因素的数量获得最佳状态。通过使用ANOVA分析每个输入变量对目标参数的影响,并提取输入参数的值,以通过信号到噪声方法来最大化断裂能量的量。结果表明,凹槽深度对断裂能的影响最大,并且随着凹槽深度的增加而减小。还以60°的凹槽角在-10°C下在非横轴样品中获得最大化断裂能的最佳组合。
。CC-BY 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 12 月 22 日发布。;https://doi.org/10.1101/2023.12.22.573028 doi:bioRxiv 预印本
熔融沉积成型 (FDM),也称为熔融长丝制造 (FFF),是增材制造领域最成熟的技术之一,由于使用和维护成本低 [1],在低熔点聚合物中广受欢迎。进料材料以长丝形式通过加热喷嘴进料,并逐层沉积在表面上。商用热塑性塑料如丙烯腈丁二烯苯乙烯 (ABS)、聚碳酸酯 (PC)、尼龙、聚乳酸 (PLA) 及其组合经常用于生产 FDM 部件 [2]。虽然可以实现高度复杂的几何形状,但这会引发相对于块体材料的三种主要强度降低机制 [3]:(i) 由于空隙导致横截面积减小。仅此一项就已证明对抗拉强度有巨大影响 [4]。(ii) 空隙引起的应力集中。基于这一观察,Xu 和 Leguillon [5] 提出了双缺口空隙模型来解释 3D 打印聚合物的各向异性拉伸强度。(iii)聚合物链的不完全相互扩散。与几何方面无关,这会降低材料本身在细丝边界处的强度 [1] 。这三种现象由大量工艺参数控制,这些参数的强大影响和复杂相互作用超出了我们目前的知识范围,是一个活跃的研究领域。Cuan-Urquizo 等人 [6] 确定了两大类参数,即制造参数(例如喷嘴温度和打印速度)以及结构参数,
3D打印机,由Markforged Inc.提供。由于3DPCM和添加剂制造的复合材料没有用于机械行为评估的标准,因此所使用的标准是根据加强聚合物的ASTM标准改编的。使用模式I和模式II断裂分析获得断裂韧性值。对于模式I断裂分析,遵循的标准为ASTM D5528,对于模式II断裂分析,标准遵循的标准为ASTM D7905,如图1。这项研究中用于层间断裂韧性分析的增强沉积为0°和90°,如图2所示,用于分析这是否直接影响3DPCM的3DPCM的层间断裂韧性𝐺和。断裂测试后,使用光学显微镜和SEM对样品进行光学分析,以分析断裂区并检测导致𝐺和𝐺测量的变化的缺陷。
地质碳捕获和存储(CCS)是减轻温室气体排放的关键技术,但泄漏的风险仍然是一个重大问题。跨密封间隔的故障和断裂网络是CO 2逃脱存储库的潜在途径,因此需要准确评估其渗透率和连通性。我们的研究提出了一种对断层区域地质泄漏进行建模的综合方法,将单断层应力 - 透明度实验室测量与详细的断裂露头数据相结合,以模拟碳存储的原位条件。我们研究了由konusdalen West区域(挪威Svalbard)的正常断层切割的Caprock序列,这是Longyearbyen Co 2实验室储层的区域密封,以及与Barents和North Sean Seas Caprock地层的类似物。数字化露头裂缝网络,我们探索了断裂尺寸分布的变化及其在断层区不同部分中的连接性。这些参数是基本的,以确定断裂网络是否提供了可渗透途径。将露头分析与实验室测量相结合,使我们能够创建自然断裂网络的耦合水力力学模型,并评估其高尺度的渗透性。我们发现,断裂网络几何形状在整个断层区域各不相同,从而导致不同的高尺度渗透率模型,从而突出了将详细的断裂网络信息纳入渗透性模拟中的重要性。我们的研究提供了一个框架,将断裂通透性测量和露头分析纳入故障区域的地质泄漏建模,这可以为CCS项目的设计和操作提供信息,并有助于减轻与CO 2的地质存储相关的风险。