汞合金的优点 ................................................................................................ 6 汞合金的缺点 ................................................................................................ 7 汞合金断裂的发生率 .............................................................................................. 7 当前关于汞合金修复体的文献 ...................................................................... 9 I.体外修复的汞合金结果 ............................................................................. 9 A. 剪切粘结强度评估 ............................................................................. 9 B. 修复体的微渗漏评估 ............................................................................. 16 C. 修复体的抗弯强度评估 ............................................................................. 19 D. 修复体的断裂强度评估 ............................................................................. 20 II.修复与更换修复体的临床寿命 ............................................................. 22 A. 回顾性研究 ............................................................................................. 23 B.临床研究 ............................................................................................. 24 III.表面处理方案和修复材料 ................................................................................31 A. 方案 ....................................................................................................31 B.系统评价 ................................................................................................36 C. 体外研究 ............................................................................................................37 D. 大体积填充树脂复合材料 ......................................................................................39 总结 .............................................................................................................................41 文献中的空白和未来需要的方向 .............................................................................41 3.材料和方法 .............................................................................................43
摘要:高熵合金的设计原理是将多种化学元素以相等或接近相等的比例混合,以创建具有独特性能的新合金,例如高强度、延展性和耐腐蚀性。高熵合金的某些性能可以通过引入新的掺杂元素来调整,掺杂元素的选择需根据工作条件而定。研究了 Ti 掺杂对高熵合金 CoCrFeMoNi 微观结构、显微硬度和弹性模量的影响。微观结构分析表明,合金的核心结构由面心立方 (FCC) 和体心立方 (BCC) 相组成,同时形成了 Laves 相。Ti 的加入使合金晶粒细化,降低了枝晶间和枝晶区域之间的 Mo 浓度差。Ti 掺杂的结果是,合金的显微硬度从 369 HV 0.2 增加到 451 HV 0.2。 Ti 掺杂使断裂强度值增加了一倍,尽管 CoCrFeMoNi 合金的弹性模量没有发生显著变化。
CVD Ceramics 的化学气相沉积 CVD 硫化锌 ® 是红外窗口、圆顶和光学元件的低成本替代品。硫化锌的断裂强度是硒化锌的两倍,而且硬度高,已成功用于许多需要机械抗恶劣环境的军事应用。Cleartran ® 是一种 CVD 硫化锌 ® 材料,通过后沉积热等静压工艺进行改性。该工艺从晶格中去除氢化锌,使晶体结构正常化并净化材料,所有这些都有助于在可见光至远红外范围(0.35 -14 微米)内实现单晶般的透射率。由于其在宽传输范围内的低吸收和散射以及高光学质量,它特别适合需要单个孔径用于多个波段光束路径的多光谱应用。 CVD Zinc Sulfide ® 和 Cleartran ® 具有化学惰性、不吸湿、高纯度、理论上致密且易于加工。可根据您的规格定制直径、矩形、CNC 异形毛坯、生成的镜片毛坯、棱镜和近净形圆顶。
CVD Ceramics 的化学气相沉积 CVD 硫化锌 ® 是红外窗口、圆顶和光学元件的低成本替代品。硫化锌的断裂强度是硒化锌的两倍,而且硬度高,已成功用于许多需要机械抗恶劣环境的军事应用。Cleartran ® 是一种 CVD 硫化锌 ® 材料,通过后沉积热等静压工艺进行改性。该工艺从晶格中去除锌氢化物,使晶体结构正常化并净化材料,所有这些都有助于在可见光至远红外范围(0.35 -14 微米)内实现单晶般的透射率。由于其在宽传输范围内的吸收和散射率低,光学质量高,它特别适合需要单个孔径用于多个波段光束路径的多光谱应用。 CVD Zinc Sulfide ® 和 Cleartran ® 具有化学惰性、不吸湿、高纯度、理论上致密且易于加工。可根据您的规格定制直径、矩形、CNC 异形毛坯、生成的镜片毛坯、棱镜和近净形圆顶。
INCONEL® 镍铬合金 625 (UNS N06625/W.Nr. 2.4856) 因其高强度、出色的可加工性(包括连接)和出色的耐腐蚀性而被广泛使用。使用温度范围从低温到 1800°F (982°C)。成分如表 1 所示。INCONEL 合金 625 的强度源于钼和铌对其镍铬基质的硬化作用;因此无需进行沉淀硬化处理。这种元素组合还使其对各种异常严重的腐蚀环境以及氧化和渗碳等高温效应具有出色的抵抗力。 INCONEL 625 合金的特性使其成为海水应用的绝佳选择,包括不受局部侵蚀(点蚀和缝隙腐蚀)、高腐蚀疲劳强度、高抗拉强度和抗氯离子应力腐蚀开裂。它用作系泊电缆的钢丝绳、机动巡逻炮艇的螺旋桨叶片、潜艇辅助推进马达、潜艇快速断开配件、海军多用途船的排气管、海底通信电缆护套、潜艇传感器控制器和蒸汽管波纹管。潜在应用包括弹簧、密封件、水下控制器的波纹管、电缆连接器、紧固件、弯曲装置和海洋仪器组件。高拉伸、蠕变和断裂强度;出色的疲劳和
本文介绍了针对海洋维修应用开发的基于丙烯酸的粘合剂的研究。单独使用粘合剂陈化了12个月以上,并定期测试拉伸样品,以表征40°C时海水老化的影响。单独的粘合剂可在海水中塑化,在12个月后损失了大约40%的模量和强度,但干燥后很大程度上恢复了这些模量和强度。并行,在相似的衰老时间后测试了粘合的玻璃和碳纤维复合组件。在40°C的天然海水中12个月后,两者都保留了超过80%的未染色明显剪切强度。在粘结之前浸入海水长达12个月的湿复合底物的粘合键合,以确定残留键强度。湿玻璃纤维复合材料组装的断裂强度不受底物浸入长达12个月的影响,而在粘合键后,碳纤维复合组件的强度在延长的底物浸入后的强度下降至约50%。讨论了这种差异的原因。结果表明,这种粘合剂显示出良好的耐用性,应考虑海洋维修应用。
这项研究调查了饮食补充葡萄Pomace粉(GP)对性能,鸡蛋质量和孵化性的影响,以及鹌鹑的血液生物化学(Coturnix Coturnix Japonica)。总共将200个鹌鹑(323.90±1.991 g体重)随机分为四个治疗组,每只复制五只十只鸟类。治疗涉及在0%(0GP),1%(1GP),2%(2GP)和4%(4GP)的基础饮食中补充GP的饮食补充。结果表明,GP显着影响饲料摄入量,卵产生和卵子的重量。1GP和2GP处理的卵产生更高,饲料转化率(FCR)更好。研究中最低的卵产量和最贫穷的FCR是4GP组。补充组的进食摄入量和卵子的重量低于0GP组。比0GP组的1GP,2GP和4GP组具有更高的蛋壳断裂强度,HAUGH单元和蛋白质指数值。等离子体总胆固醇和所有GP供应组中的高密度脂蛋白胆固醇浓度低于0GP鹌鹑。与0GP组相比,补充GP对雏鸡活体重和早期胚胎死亡率的影响很大,GP补充大大降低了早期胚胎死亡。总而言之,这项研究表明,高达2%的gp鹌鹑饮食对现场表现没有负面影响,改善了一些卵质量的特征,降低了早期胚胎死亡,并且可能有助于降低总脂质和胆固醇水平。
