John Basl Department of Philosophy and Religion Email: j.basl@northeastern.edu 360 Huntington Avenue Web: http://johnbasl.net Boston, MA 02115 Academic Appointments and Affiliations Northeastern University Associate Professor 2019 – Assistant Professor 2013 – 2019 Associate Director, AI and Data Ethics Initiatives 2021 – - Northeastern Ethics Institute Affiliated Faculty - Khoury College of Computer Science 2023 – Faculty Affiliate, Core AI - Northeastern Institute for Experiential AI 2021 – Harvard University Faculty Associate 2020 – - Edmond J. Safra Center for Ethics - Berkman Klein Center for Internet and Society AI Initiative Fellow-in-Residence 2019 – 2020 - Edmond J. Safra Center for Ethics - Berkman Klein Center for Internet and Society Bowling Green State University 2011 – 2013年威斯康星州助理教授教育大学 - 麦迪逊博士在哲学2011硕士哲学2009年东北大学B.S. 在哲学2006年专业领域应用伦理(技术,人工智能,环境),伦理,生物学哲学哲学2009年东北大学B.S.在哲学2006年专业领域应用伦理(技术,人工智能,环境),伦理,生物学哲学
一个简单的答案是我父亲是一名科学老师,一切都(有时是烦人!)与科学有关的成长。我认为更准确的答案是,在物理治疗(PT)学校期间,我的祖父被诊断出患有帕金森氏病。在学习神经系统康复原则的同时,看着他在疾病中的经历,(后来是我与这些人在诊所中的经历),我意识到,关于与人类运动的控制,神经退行性疾病如何改变了这种神经电路以及包括物理治疗的干预措施的影响,对人类运动的控制方式以及如何改变了人类运动的基本问题是什么不了解的。到达这里,我在洪堡州立大学获得了细胞和分子生物学的BS,并在洪堡州立大学进行了动物系统发育和生理学研究。作为一名本科生,我还是大学跑步者和足球运动员。从那里开始,我从UCSF的药学院开始,但是我在一年之内就离开了,因为我喜欢生理学,但看不到自己是药剂师。在进行一些灵魂搜索并在跑步行业工作后,我回到了UCSF上PT学校。在我的PT计划中,我协助研究了秋季预防结果和多发性硬化症(MS)的平衡。毕业后,我在Covid期间临床练习了一年,然后返回UCSF获得我的康复科学博士学位(Neuroscience)学位。
CW5 Aaron L. SKILES 指挥部一级准尉,美国陆军反情报司令部一级准尉 5 级 (CW5) Aaron L. SKILES 是美国陆军反情报 (CI) 特工和技术员 (351L),已在陆军反情报部队服役超过 24 年。CW5 Skiles 于 2022 年 9 月担任美国陆军反情报司令部 (ACIC) 指挥部一级准尉 (CCWO)。Skiles 先生的军事生涯始于 1996 年 8 月的印第安纳州国民警卫队,当时他以轻型反装甲武器专家/步兵 (11H) 的身份入伍。Skiles 先生于 1999 年 6 月转入现役,当时他重新归类为美国陆军反情报特工 (97B - 现为 35L)。他作为 CI 特工的第一个任务是在位于北卡罗来纳州布拉格堡的第 525 军事情报 (MI) 旅,期间他被派往波斯尼亚(六个月;2001-2002 年)和阿富汗(六个月;2003 年),在两次部署期间均担任 CI 和人力情报 (HUMINT) 作战管理团队的士官长。2003 年 11 月,美国陆军选中 Skiles 先生,担任位于马里兰州米德堡的第 902 军事情报大队的提名战略任务。2003 年 11 月至 2011 年 8 月期间,Skiles 先生在两个 902 军事情报大队编队、美国陆军外国 CI 活动和第 310 军事情报营服役。2005 年,Skiles 先生成为美国陆军准尉和 CI 技术员 (351L)。在被指派到 902 军事情报大队担任士官和准尉期间,斯基尔斯先生担任了 CI 调查员和 CI 行动官,并领导了两 (2) 个团队在网络空间开展 CI 活动。斯基尔斯先生在 902 军事情报大队任职期间还被部署了三 (3) 次:一次被派往卡塔尔(12 个月;2006-2007 年),担任 CI 行动官;一次被派往非洲之角(六个月;2009 年),在吉布提和埃塞俄比亚担任联合特遣部队 - 非洲之角的 CI 和人力情报小组组长;一次被派往阿富汗(八个月;2010-2011 年),担任特种作战特遣部队 - 东南的 CI 和人力情报负责人 (S2X)。 2011 年 8 月至 2014 年 5 月,Skiles 先生担任弗吉尼亚州匡蒂科联合 CI 训练活动 (JCITA) 的联合高级 CI 教员和课程主席。Skiles 先生是高级外国 CI 操作课程的教员,并领导了 JCITA 网络环境课程中 CI 活动的重新设计。Skiles 先生的职责包括开发、规划、协调和执行严格的联合 CI 课程和研讨会。2014 年 5 月至 2017 年 12 月,Skiles 先生担任马里兰州埃尔克里奇国防计划支持活动的高级项目官员和团队负责人。Skiles 先生领导两个专门的项目团队,为全球不同国防部 (DOD) 计划、办公室和活动的独特需求提供定制支持。Skiles 先生的职责包括评估复杂的项目计划,协调复杂的支持协议,并监督所有项目计划和支持协议的执行,这需要定期与高级军事官员和公司高管接触。2017 年 12 月至 2020 年 11 月,斯基尔斯先生担任美国情报和人力情报司 (J2X) 的情报行动科科长和高级情报技术员
人工智能正在改变我们周围的世界——影响着我们学习、经商和保卫国家等方方面面。作为人工智能研究的主要非国防联邦资助者之一,NSF 正在推动尖端创新,以扩大我们对人工智能概念和技术的理解,加速值得信赖的人工智能开发,使人工智能资源的获取更加民主化,并为下一代人工智能劳动力做好准备。NSF 在支持跨学科科学研究方面发挥着独特作用,使该机构能够将不同的研究团队聚集在一起,并使我们的组织在推进人工智能基础和利用其潜力加速所有科学和工程领域以及我们经济的许多部门的发现和创新方面发挥关键作用。
摘要 科学的进步表明,在不久的将来,通过作用于生殖细胞或植入前胚胎来修改新个体的基因的可能性将在整个人口中实现。 2018年底,国际科学界对贺建奎博士的实验表示担忧。贺建奎利用CRISPR-Cas 9技术,对人类胚胎进行生殖目的的基因改造,导致至少两名女婴诞生。在本文中,我们将按照伊曼纽尔提出的标准,对建奎博士的实验进行伦理分析;根据这种观点,该实验不符合科学伦理委员会在评估方案时通常使用的任何道德标准。然后,我们将回顾有关在人类生殖细胞(精子和卵子)和植入前胚胎中使用基因编辑用于生殖目的的伦理争议。由于这些变化可以遗传给后代,而且该技术仍处于实验阶段,我们将主张暂停将其用于这些目的。当基因编辑不是用于生殖目的,而是用于产生新知识时,我们将解释为什么我们认为有必要区分该技术在生殖细胞中的应用与人类胚胎的研究,这一区别可能会根据对人类胚胎作为人类物种活体的评估而受到质疑。我们还将简要讨论使用基因编辑技术治疗或预防疾病与使用基因编辑技术来改善或“增强”人类之间的区别,因为后者存在一些道德上的异议。最后,我们将对智利和国际上的监管观点进行简要分析,因为这些技术的一些应用引发了道德问题,凸显了对该领域进行严格监管的必要性。
1谢菲尔德大学,公民和结构工程,英国谢菲尔德2苏黎世2,瑞士苏黎世环境工程研究所,瑞士3 EAWAG,瑞士联邦水上科学与技术研究所,杜宾德,瑞士,瑞士4号挪威特朗德海姆科学技术大学的民用与环境工程,挪威6单位液压工程部,部门荷兰7号土木工程系,工程与建筑环境学院,马来西亚雪兰鱼8智能中心,马来西亚8智能控制中心,马来西亚,马来西亚9号智能控制中心,马来西亚9号,马来西亚9号,马来西亚大学,莱昂大学,里昂,弗兰德,弗兰德,弗朗西尔,弗朗西尔,弗朗西尔,弗兰德,弗兰德, of Melbourne, School of Ecosystem and Forest Sciences, Burnley, Australia 12 RPS Group, Abingdon, UK 13 Anglian Water Services, Huntingdon, UK 14 Aquafin NV, Aartselaar, Belgium 15 EPHM Lab, Department of Civil Engineering, Monash University, Melbourne, Australia荷兰7号土木工程系,工程与建筑环境学院,马来西亚雪兰鱼8智能中心,马来西亚8智能控制中心,马来西亚,马来西亚9号智能控制中心,马来西亚9号,马来西亚9号,马来西亚大学,莱昂大学,里昂,弗兰德,弗兰德,弗朗西尔,弗朗西尔,弗朗西尔,弗兰德,弗兰德, of Melbourne, School of Ecosystem and Forest Sciences, Burnley, Australia 12 RPS Group, Abingdon, UK 13 Anglian Water Services, Huntingdon, UK 14 Aquafin NV, Aartselaar, Belgium 15 EPHM Lab, Department of Civil Engineering, Monash University, Melbourne, Australia荷兰7号土木工程系,工程与建筑环境学院,马来西亚雪兰鱼8智能中心,马来西亚8智能控制中心,马来西亚,马来西亚9号智能控制中心,马来西亚9号,马来西亚9号,马来西亚大学,莱昂大学,里昂,弗兰德,弗兰德,弗朗西尔,弗朗西尔,弗朗西尔,弗兰德,弗兰德, of Melbourne, School of Ecosystem and Forest Sciences, Burnley, Australia 12 RPS Group, Abingdon, UK 13 Anglian Water Services, Huntingdon, UK 14 Aquafin NV, Aartselaar, Belgium 15 EPHM Lab, Department of Civil Engineering, Monash University, Melbourne, Australia荷兰7号土木工程系,工程与建筑环境学院,马来西亚雪兰鱼8智能中心,马来西亚8智能控制中心,马来西亚,马来西亚9号智能控制中心,马来西亚9号,马来西亚9号,马来西亚大学,莱昂大学,里昂,弗兰德,弗兰德,弗朗西尔,弗朗西尔,弗朗西尔,弗兰德,弗兰德, of Melbourne, School of Ecosystem and Forest Sciences, Burnley, Australia 12 RPS Group, Abingdon, UK 13 Anglian Water Services, Huntingdon, UK 14 Aquafin NV, Aartselaar, Belgium 15 EPHM Lab, Department of Civil Engineering, Monash University, Melbourne, Australia荷兰7号土木工程系,工程与建筑环境学院,马来西亚雪兰鱼8智能中心,马来西亚8智能控制中心,马来西亚,马来西亚9号智能控制中心,马来西亚9号,马来西亚9号,马来西亚大学,莱昂大学,里昂,弗兰德,弗兰德,弗朗西尔,弗朗西尔,弗朗西尔,弗兰德,弗兰德, of Melbourne, School of Ecosystem and Forest Sciences, Burnley, Australia 12 RPS Group, Abingdon, UK 13 Anglian Water Services, Huntingdon, UK 14 Aquafin NV, Aartselaar, Belgium 15 EPHM Lab, Department of Civil Engineering, Monash University, Melbourne, Australia
2 贝蒂尔·斯科格。挪威航运管理局,2016 年 1 月 25 日电话交谈。3 卡琳·塞兰德。航道管理负责人,2016 年 1 月 8 日谈话 4 不同海标的光学探测距离取决于各种因素,例如不同天气条件下的形状、颜色和能见度、光照条件、海标的背景站立和观察者的视线水平(IALA,2012)。
Yahya E. Choonara 教授 I BPharm;MPharm;PhD;MASSAf;MPS;TWAS(药学) 药剂学个人教授 主席和主任 I 药学和药理学 主任和首席研究员 I WADDP I http://www.wits.ac.za/waddp 威特沃特斯兰德大学 I 健康科学学院 7 York Road, Parktown, 2193, 约翰内斯堡, 南非 W: http://www.wits.ac.za/therapeuticsciences/pharmacy--pharmacology
佛兰德建筑占比 28%,是佛兰德非 ETS 温室气体排放总量的第二大贡献者。因此,要到 2050 年迈向低碳社会,需要付出更大的努力,通过深度改造和转向可持续供暖,使建筑行业更加可持续。佛兰德政府于 2019 年 12 月 20 日通过的《佛兰德气候战略 2050》包括到 2050 年将非 ETS 部门的温室气体排放量减少 85%(与 2005 年相比)的目标,并力争实现完全的气候中和。对于建筑行业,我们的目标是到 2050 年将佛兰德建筑存量的排放量减少到 230 万吨二氧化碳当量。这细分为以下 2050 年的指示性目标: