随着连接和自动驾驶汽车的增殖,控制器区域网络(CAN)总线由于其速度和效率而成为车载网络的主要通信标准。但是,CAN总线缺乏基本的安全措施,例如身份验证和加密,使其非常容易受到网络攻击的影响。为了确保车辆安全性,入侵检测系统(IDS)必须检测到可见的攻击,并为新的,看不见的攻击提供强大的防御,同时保持轻量级的实用部署。以前的工作仅依赖于CAN ID功能,或者使用了手动功能提取的传统机器学习(ML)方法。这些方法忽略了其他可剥削的功能,这使得适应新的看不见的攻击变体和损害安全性。本文介绍了一种尖端,新颖,轻巧,车载,IDS玻璃,深度学习(DL)算法,以解决这些局限性。所提出的ID采用多阶段方法:在第一个阶段的人工神经网络(ANN)来检测可见的攻击,以及在第二阶段进行长期的短期记忆(LSTM)自动编码器,以检测新的,看不见的攻击。要了解和分析各种驾驶行为,使用最新的攻击模式更新模型,并保留数据隐私,我们提出了一个理论框架,以在层次结构联合学习(H-FL)环境中部署我们的ID。实验结果表明,我们的IDS的F1得分超过了0.99,对于看到的攻击,新型攻击的检测率为99.99%,超过0.95。这使我们的模型可与可见和看不见的攻击进行稳健。此外,误报率(FAR)在0.016%的情况下极低,最小化了错误警报。尽管使用了以其在识别复杂和零日攻击方面的有效性而闻名的DL算法,但IDS仍然轻量级,确保了其对现实世界部署的可行性。
该项目致力于开发制造单片集成、可寻址的微型和纳米 LED 阵列的技术,这些阵列可发出可见光。微型 LED 阵列将在明亮的高分辨率显示器、无线 Li-Fi 通信或增强现实和虚拟现实眼镜中得到广泛应用。纳米 LED 阵列的应用包括光遗传学、超分辨率显微镜、无掩模光刻以及化学和生物医学传感器。开发的技术将允许 LED 阵列按顺序放置,一个叠在另一个上面,发出不同波长的光。
在进入2050年净净净的途中,英国政府通过与1990年级别相比,通过削减78%的排放来设定2035年的目标。为了帮助了解电气化的本地能源系统如何为该目标和相关成本做出贡献,我们开发了一个基于全系统的本地能源优化(LEO)模型。该模型捕获了一系列最先进的技术,包括构建织物改造,电池存储,电动机,电加热,需求响应,分布式可再生以及点对点(P2P)能源交易。和该模型可以在成本和排放之间进行权衡评估,比较了两种系统操作模式,即面向成本和网格影响,并评估天气风险和资本成本假设的影响。威尔士的一个案例研究表明,(1)资本成本假设可导致当地能源系统的总成本差异高达30.8%; (2)以成本为导向的模式操作系统可以节省多达5%的成本,而面向网格的模式; (3)热泵的电加热在所有研究的技术中的优先级最高。总体而言,这项研究演示了如何通过整个系统融合到近期技术和商业模型的整个系统中,迈向脱碳的未来。
电动汽车(电动汽车)的电力单元(即电池)在充电或排放时会产生热量,从而导致其性能和可靠性随着时间的推移而恶化。本文研究了流经微型通道的液体冷却剂的几何和热流体参数。这些嵌入在电动汽车电池的表面中,以减少过热。设计参数,例如纵横比和微型频道的角度取向,以随机调查几种几何构型,这些几何构型几乎不直观。冷却液质量流量和流体入口温度也通过随机分布值的大数据集进行变化。与经验验证的模型一起实施了实时的EV驾驶周期,以评估电池操作,这证明了电池的热状态具有不同级别的冷却改造的复杂依赖性。该研究还分析了泵送和冷却能量需要驱动冷却液系统的寄生动力消耗,以实现最佳设计的改装,以实现可靠的电池性能。发现迷你通道参数极大地影响了电池的热性能。但是,发现优化的情况在电池中具有最小的温度差和最小功率要求。液体入口速度为0.13 m/s,流体入口温度为312.9 K,纵横比为1.7,倾斜角为4.9◦
本手稿提出了一种新型的混合人工智能(AI)方法,用于针对电动汽车充电站(EVCSS)专门设计的统一功率质量护发素(UPQC)。的目的是整合多个车辆到网格(V2G)功能,从而减轻与电动汽车(EV)网格集成相关的挑战,并结合分布式能源(DERS)。本手稿中提出的混合技术结合了梯度提升决策树(GBDT)算法和果冻搜索(JS)算法,称为GBDT - JS技术。这种创新的方法涉及利用充电站提供电动汽车充电服务,并促进电动电动机的排放。将UPQC与DER的集成(例如光伏(PV))实施,以降低转换器的功率额定功率和实现功率需求需求。使用UPQC内的初始转换器用于管理直流电流(DC)电压,而第二个转换器则监督电动汽车的功率充电或放电过程。此外,它减轻了电池电压发射的影响。具有车辆到网格功能的UPQC最小化网格的负载压力,从而防止了过度流动的问题。提出的方法调节UPQC转换器以减轻电力质量问题,例如谐波电流和电压下垂。随后,使用MATLAB/SIMULINK操作平台证明了该技术的有效性。GBDT - JS性能的评估涉及与现有技术的比较分析。该评估表明,该提出的方法有效地减轻了功率质量问题,特别减少了总谐波失真(THD),并提供最佳结果。
我们从神经科学(“连接组学”)了解到,大脑总体上是一个非常稀疏的网络,具有相对较小的局部密集神经元簇。这些拓扑特性对于大脑高效、稳健地运行以及以分层模块化方式处理信息的能力至关重要。另一方面,我们今天使用的人工神经网络非常密集,甚至是完全连接的,至少在连续层之间是如此。此外,众所周知,深度神经网络高度参数化:修剪研究表明,通常可以消除 90% 的连接(权重)而不会显着降低性能。然而,修剪通常是在密集网络训练之后进行的,这只会提高推理过程的运行时效率。前面的观点表明,我们需要设计稀疏神经网络的方法,无需任何训练,在训练后其性能几乎与相应的密集网络一样好。本次演讲将首先介绍一些修剪文献的背景,无论是在训练之后还是在训练之前。然后,我们将介绍一种最近提出的(ICML 2021)方法,称为 PHEW(具有更高边权重的路径),该方法在训练之前创建稀疏神经网络,并且可以快速学习并很好地概括。此外,PHEW 不需要访问任何数据,因为它仅取决于给定网络架构的初始权重和拓扑。
2. 申请表可从学校网站下载,需填写申请表并缴纳 250 卢比的费用,以汇票形式寄给 APS、BB、Cantt Srinagar,并于 2025 年 1 月 23 日或之前通过挂号/速递或亲自送达学校办公室。请勿通过电子邮件发送申请。申请的 QR 如下:- S 号要求:- (a) 应届毕业生年龄标准为 2025 年 4 月 1 日 40 岁,经验不足 57 岁(包括 ESM)。 (b) 面试的同时还将进行教学技能测试评估。 (c) 仅对语言教师进行 15 分的笔试,以评估候选人的书面表达能力。 (d) OST 合格的候选人将被优先考虑。不具备 OST 资格的候选人在被选为教师后,必须通过 OST 才能获得定期任命,两年内总体原始分数至少为 50%,一年内固定期限的 OST 最低总体原始分数为 40%。在定期和固定期限类别中,要获得 TGT 任命,必须通过 CTET/TET。未通过 CTET/TET 的候选人可能会被考虑临时任命。 (e) 合格的候选人将被电话邀请参加面试。请确保申请表中填写的联系电话和电子邮件 ID 正确。注意:- (i) 有关更多详细信息,请致电 0194-2468224/ 8492936337/9906765321/9419159461/ 9906347599 (ii) 面试时,上述职位空缺可能会增加/减少。 (iii) 学校每个科目只有一个空缺。 (iv) 上述职位可在印度 APS 内调动。 (v) 根据现行 AWES 指南,将为 100% 残疾的军人妻子和军人遗孀提供优惠。 (vi) 学历要求和薪资。所有职位的学历要求符合 NCTE/CBSE/KV Sangthan/AWES 规定,薪资符合 AWES 规范,有关其他详细信息,请访问学校网站 www.apssrinagar.co.in
参与制定该地点规划的有: ● 当地社区:占总人口 4,000 人的 1,500 多人 ● 由邓弗里斯和加洛韦委员会、克里谷地区发展信托、克里谷社区委员会、第三部门总干事和牛顿斯图尔特倡议支持的当地指导小组 ● 自己的团队和社区代表组成,他们帮助指导了整个过程。他的声明旨在支持我们为牛顿斯图尔特和明尼加夫登记地点规划的意愿表达。本地方规划和本声明根据以下规定编制: ● 政府立法:2021 年城镇与乡村规划(地方规划)(苏格兰)条例 ● 苏格兰政府规划通告 1/2022:地方规划(LPP) ● 邓弗里斯和加洛韦议会的 LPP 要求概述。
当人类在月球勘探和火星迁移等行星上的活动时,有必要建立一个基地,包括出发和着陆运输飞机和运输路线。从地球运输物资的成本高和运输能力有限,因此有必要在当地获得和制造大量的建筑材料。作为解决方案,我们正在进行研究,重点是通过用激光射击和融化地球的地面土壤的层压和层压方法。基于激光的技术可以应用于目前在实际使用中的3D打印机技术,将来,预计太阳能激光器将在太空中使用。
背景:儿童呼吸系统疾病是一个必须解决的问题,因为它对儿童的长期发育和健康有重大影响。肺结核和肺炎是儿童常常患的疾病。出现的症状之一是呼吸急促。儿童呼吸困难可能是由于分泌物积聚、无法自主排出分泌物以及咳嗽反射弱引起的。减轻呼吸困难的一种疗法是薄荷芳香疗法,薄荷中的成分会放松支气管,使呼吸更加顺畅。目的:描述在儿童气道清除功能不全的护理及薄荷芳香疗法的应用方面实施护理实践的效果。方法:本文采用的方法是定性描述,采用案例研究方法并回顾有关薄荷芳香疗法的期刊。结果:根据对3例管理患者的评估结果,3例管理患者均出现呼吸困难、无法咳嗽和发烧等症状。提出的主要护理问题是气道清除无效的主要护理问题。提供的干预措施包括通过监测呼吸模式进行气道管理、监测痰液产生以及协作提供药物和非药物治疗。提供的非药物治疗方法是进行薄荷芳香疗法,持续 3 天,每次给药时间为 15 分钟。结论:对3例患者实施薄荷芳香疗法,可以减少呼吸频率,降低辅助呼吸肌,减少痰液的产生。关键词:儿童、芳香疗法、薄荷、肺炎、肺结核 参考书目:34 (2015-2024)