FYR 流程的最后一步是最终 FYR 报告。多机构团队目前正在审查第五份 FYR 报告草案。该文件将在 2024 年 3 月 31 日之前供公众审查和评论。在公众评论期结束时,海军将审查所有多机构团队和公众评论。最终 FYR 报告将在与多机构团队解决评论后发布。
政府不保证所提供的任何场地相关信息的准确性。政府和/或其代表为支持本次招标而提供的场地相关信息应仅视为信息。此类信息可能包括技术报告和研究、建筑状况报告或旨在支持提议者开发申请的其他技术信息。提议者应核实(而不是仅仅依赖)政府提供的所有场地相关信息,以避免不可预见的成本。
** 所有流量以 1000 立方英尺/秒为单位 ** 截至:日期 GAPT AKIA SUX DENE TUIA OMA GRNE WTNE LUNE NCNE 12/30 14.0 0.7 14.4 13.6 0.8 15.2 0.6 1.2 5.5 21.1 12/31 14.0 0.6 15.0 14.8 0.5 15.3 0.7 1.3 4.6 21.4 1/1 14.0 0.4 15.1 15.1 0.5 16.2 0.7 1.2 5.5 21.6 1/2 14.0 0.4 15.0 15.0 0.5 16.7 0.6 1.1 4.8 22.8观察值 1/3 14.0 0.4 14.9 15.1 0.4 16.4 0.6 1.0 5.0 22.1 预测值 1/4 14.0 0.4 14.9 15.1 0.4 16.2 0.8 1.0 4.8 21.6 1/5 14.0 0.4 14.8 15.0 0.4 16.1 0.8 0.9 4.7 21.3 1/6 14.0 0.4 14.8 14.9 0.4 15.8 0.8 0.9 4.6 20.9 1/7 14.0 0.4 14.7 14.9 0.4 15.7 0.8 0.8 4.5 20.6 1/8 12.0 0.4 14.7 14.8 0.4 15.6 0.8 0.8 4.5 20.4 1/9 12.0 0.4 14.3 14.8 0.4 15.5 0.8 0.8 4.6 20.4 1/10 12.0 0.4 12.8 14.2 0.4 15.5 0.9 0.8 4.5 20.3 1/11 12.0 0.4 12.7 13.1 0.4 15.0 0.9 0.8 4.5 20.1 1/12 12.0 0.4 12.7 12.8 0.4 14.0 0.9 0.8 4.5 19.3 1/13 12.0 0.4 12.7 12.8 0.3 13.5 0.9 0.7 4.5 18.5 1/14 12.0 0.4 12.7 12.8 0.3 13.5 0.9 0.7 4.6 18.3 1/15 12.0 0.4 12.7 12.8 0.3 13.5 0.8 0.7 4.6 18.2 1/16 12.0 0.4 12.7 12.8 0.3 13.5 0.8 0.7 4.5 18.2
摘要这项研究介绍了突尼斯角豆豆荚的主要营养成分,通过热水提取(50°C 190分钟)获得的角豆汁的某些特性以及热巴氏杀菌的影响(70°C持续15分钟)。角豆豆荚显示出大量的糖(〜65 g/100 g干物质),可观的蛋白质含量(〜10 g/100 g干物质),灰分的大量含量(3.35 g/100 g干物质)和低水平的脂质(0.28 g/100 g干物质)。相应的果汁是根据物理特征,营养成分,微生物特征和感觉特性来表征的。结果显示高粘度,高含量可溶性糖和缺乏致病性。与参考果汁(水果鸡尾酒汁)相比,长者(80%)对角豆汁的总体可接受性很高。原始的角豆汁在70°C下热巴氏灭菌15分钟。研究了巴氏灭菌对颜色和清晰度,菌群和维生素C含量的影响。观察到菌群数的重要减少,尤其是1900年至270 CFU/mL的总菌群。在2.87到3.01的颜色值中也观察到显着增加,清晰度从0.87到1.04。与生汁相比,在巴氏灭菌汁中的维生素C含量中检测到显着降低。关键字:角豆荚;角豆汁;热水提取;热巴氏杀菌。1。引言角树(Ceratonia Siliqua L.)是地中海国家的常绿植物,包括突尼斯在内,沿海地区天然生长[1]。成熟的新鲜水果(角豆豆荚)由90%的果肉和10%的种子组成。Cacob Pod的营养成分根据角色零件,品种和气候而广泛不同[2]。角豆浆的特征是高糖含量(40-60%),
这项可行性研究表明,将 BESS 与现有的同步发电机集成在技术上是可行的,并且不会损害共置的热力机组或网络。此外,BESS 已被证明可以在网络故障条件下通过提供无功功率来调节电网电压来支持现有发电机。不幸的是,事实证明,在相对较短的 10 年项目寿命内,大规模储能的成本超过了这种 BESS 配置的预期收入。如果没有额外的市场机制来评估和支持能源容量、旋转备用或其他新兴市场服务的提供,这种 BESS 和同步发电机的配置不太可能在 NEM 中实现。或者,在 VPPS 安装一个由 Delta 运营支持的示范项目,资金由新南威尔士州煤炭创新公司资助,这将促进该技术的发展,并为拟议的商业模式提供实际规模的调查。如果证明成功,这个示范项目将提供足够的知识共享,以便在新南威尔士州的所有燃煤机组中更广泛地推广该技术。
执行摘要 尽管最近有关于 Hunters Point 造船厂 (HPS) 清理工作拙劣的报道,但公众从未完全了解海军放射性活动的范围之广以及导致污染的不良环境控制。许多人被误导,认为这些活动主要与几艘暂时停泊在 Hunters Point 的带有放射性的船只以及其他一些未指明但有限的活动有关。然而,HPS 数十年来使用大量各种放射性核素的作业规模远远超出了人们的普遍理解。这些反过来又造成了比海军迄今为止承认的更广泛的污染可能性——数十种放射性核素影响了 HPS 的所有部分。HPS 的核活动可以追溯到原子时代的黎明。1945 年 7 月 16 日“三位一体”爆炸发生后数小时内,美国海军印第安纳波利斯号从亨特斯角驶往太平洋的天宁岛,带走了世界上一半的高浓缩铀和“小男孩”原子弹的零部件。8 月 6 日,原子弹被装载到埃诺拉·盖伊号上,投向广岛。不到一年后,太平洋进行了战后第一次核试验。第二次试验在比基尼环礁泻湖进行,结果严重失控。大量放射性物质污染了数百艘船只,导致海军大部分舰队瘫痪。仅这次试验就有 79 艘放射性船只被带到 Hunters Point 进行“净化”,包括用喷砂和蒸汽清除船上的放射性物质,这反过来又有可能将污染转移到 Hunters Point 各地。由于放射性物质无法通过物理手段中和,“净化”实际上只是将其从放射性船只转移到 Hunters Point。这些太平洋原子弹试验船上的 60 多万加仑放射性污染燃油在 HPS 的锅炉中燃烧,这可能会使污染广泛传播。位于 HPS 的 HPS 海军放射防御实验室 (NRDL) 参与了 1950 年至 1958 年的每次核武器试验。这些原子弹和氢弹试验产生了大量高放射性核武器碎片,这些碎片被带到了 HPS。例如:除了核弹污染和碎片外,国家自然资源局的放射性物质许可证还允许在 Hunters Point 存放大量放射性物质,用于武器效应研究和其他目的。