摘要 以核酸酶为主要成分的基因编辑工具目前已能对哺乳动物基因组实现可编程的定点突变或插入或删除。从锌指核酸酶(ZFNs)、转录激活因子样效应核酸酶(TALENs)、CRISPR/Cas系统到更安全、更精准的Cas9融合蛋白基因编辑工具以及其他核酸酶基因编辑工具,本文系统地阐述了基因编辑的发展与演变,详细介绍了下一代基因编辑工具的开发与优化,并对基因编辑工具的临床应用与挑战进行了展望。 关键词 基因编辑;CRISPR/Cas9;碱基编辑;先导编辑;双链断裂;进展
- 对人类原代细胞进行体外改造,用于细胞治疗应用(例如基因组编辑、CAR-T 细胞的生成) - 瞬时生产潜在的治疗性蛋白质或抗体,用于构建体筛选 - 生成大量瞬时改造的原代细胞,用于基于细胞的检测
新一代红外传感器 这个为期四年的项目首次让欧盟红外 (IR) 产品制造商联合获得先进的 CMOS 技术来设计新的红外传感器 由 10 个成员组成的联盟旨在获得欧洲主权,为未来的国防系统生产高性能红外传感器 法国格勒诺布尔,2023 年 1 月 10 日——Lynred 是一家为航空航天、国防和商业市场提供高质量红外探测器的全球领先供应商,今天宣布启动 HEROIC,这是一项欧洲国防基金项目,旨在开发用于下一代红外 (IR) 传感器的高度先进的电子元件,同时巩固这些最先进产品在欧洲的供应链。 HEROIC(高效读出集成电路)是由 Lynred 牵头的 10 个欧洲合作伙伴组成的联盟,是一个为期四年的项目,于本月启动,预算约为 1900 万欧元( 1980 万美元),其中欧洲国防基金出资 1800 万欧元( 1880 万美元)。HEROIC 是首个将欧洲红外制造商(其中几家是竞争对手)聚集在一起以战略性地解决共同问题的此类合作项目。该项目的主要目标是增加使用新型欧洲先进 CMOS 技术的渠道和灵活性,该技术为开发下一代高性能红外传感器提供了关键能力——这些传感器将具有更小的像素和先进的功能,可用于国防应用。总体目标之一是使欧洲获得生产高性能红外传感器的技术主权。联盟成员包括三家红外制造商:AIM(德国)、项目负责人 Lynred(法国)和 Xenics(比利时);四家系统集成商:Indra(ES)、Miltech Hellas(GR)、Kongsberg(NO)和 PCO SA(PL);一家组件提供商:IC 开发商 Ideas(NO),以及两家研究机构 CEA-Leti(FR)和塞维利亚大学(ES)。Lynred 首席战略官 David Billon-Lanfrey 表示:“Lynred 很自豪能参与这个改变游戏规则的项目,该项目旨在确保欧洲在红外传感器设计和供应方面的工业主权。该项目代表欧洲红外制造商获得与各种红外探测器和 2D/3D 架构兼容的卓越 CMOS 技术的第一阶段,同样重要的是,使其在强大的欧盟供应链中可用。”获得联盟合作伙伴从未有机会访问的最新先进 CMOS 技术对于下一代读出集成电路 (ROIC) 的可持续设计至关重要。其共同指定的平台将使每个联盟合作伙伴能够追求各自的技术路线图,并更有效地满足 2030 年后国防系统的更高性能期望。“HEROIC 项目将使 AIM 能够开发基于欧洲硅 CMOS 技术的先进 ROIC,作为其下一代红外传感器的重要组成部分,”Rainer Breiter 说,AIM IR 模块项目副总裁。“我们期待与我们的合作伙伴一起采用这种共同的方法,获取最新的先进 CMOS 技术。”
• 由 17 个相同的多功能控制台组成 • 实时控制和协调所有设备 • 集中从传感器收到的所有信息以制定战术情况并允许控制所有武器系统 • 提供高水平的自动化和极大的灵活性,可将战斗任务分配给不同的操作员
摘要 中国是如何成为人工智能发展的领军者之一的?在与美国的人工智能竞赛中,中国会胜出吗?现有研究主要集中于中国中央政府在推动人工智能方面的作用。尽管中央政府很重要,但人工智能发展的很大一部分责任落在地方政府的肩上。地方政府在推动人工智能方面有着不同的利益、能力,因此也有不同的方法。这就提出了一个重要的问题:地方政府如何应对中央政府关于人工智能等新兴技术的政策?本文通过分析中央和地方的人工智能政策文件和省级差异来回答这个问题,重点关注中国新一代人工智能发展规划(NGAIDP)的传播。使用引用 NGAIDP 的中国省级人工智能相关政策的独特数据集,通过进行内容分析和模糊集定性比较分析(fsQCA)来检查 NGAIDP 的传播性质。本研究强调了地方政府在中国人工智能发展中的重要作用,并强调将政策传播视为一个政治过程来审视。
复合修复材料代表了一类独特的现代生物材料,因为它们在外观和功能上都取代了生物组织。早期配方的特点是存在聚合收缩、边缘适应不当、近端接触不适当、变色或染色以及继发龋齿等问题。牙科复合材料需要改善上述性能并实现充分接触,并且已经进行了大量尝试来实现这些目标。为了保护健康的牙齿结构,减少微渗漏和继发龋齿的形成,增加断裂韧性,减少边缘色素沉着和术后敏感性,以及技术的发展,新一代复合材料已经生产出来。本文讨论了树脂修复材料的进展。