脑机接口 (BCI) 是与大脑交互的双向系统,可以获取神经数据和刺激神经元。BCI 可根据其侵入性程度进行分类,侵入性接口广泛应用于医学治疗。例如,专注于神经记录的侵入性 BCI 已用于控制残疾患者的假肢,而用于神经调节的 BCI 则有助于治疗神经退行性疾病,如帕金森病 [9]。就侵入性而言,第二大 BCI 家族是非侵入性 BCI。基于非侵入性原理的 BCI,主要专注于神经数据采集,如脑电图 (EEG),近年来越来越受欢迎,其应用范围从传统医疗场景扩展到娱乐或视频游戏等新领域。然而,尽管非侵入性 BCI 有诸多好处,但一些文献从神经数据采集的角度发现了特定的网络安全问题。具体来说,Martinovic 等人 [ 19 ] 证明攻击者可以利用 BCI 用户在接受已知视觉刺激时产生的大脑反应 (P300 电位),获取敏感的个人数据。Bonaci 等人 [ 1 ] 还描述了一种场景,攻击者可以恶意添加或修改定义 BCI 的软件模块
硼是化学和材料科学的基石之一,在历史和现代世界中有着广泛的用途。这种元素在自然界中以硼酸盐和硼酸盐的形式存在,传统上用于玻璃、陶瓷和防腐产品。但在现代,硼正成为从能源技术到纳米技术等许多领域的战略材料。此外,硼在能源领域,特别是在可再生能源系统和电池技术中的作用非常突出。在太阳能系统中,硼作为一种成分脱颖而出,可以提高锂离子电池的能量密度和寿命,同时提高光伏电池的效率。虽然硼氢化物在氢存储和释放领域的重要性日益增加,但碳化硼通过在核能反应堆中提供中子控制来提高安全性。此外,硼还用于国防和航空航天工业中轻质耐用材料的生产。在纳米技术领域,硼纳米管和纳米材料在储能、工业催化剂和传感器技术方面实现了突破性应用。此外,硼基化合物以其抗癌特性和支持伤口愈合的作用在生物医学领域引起了人们的关注。硼元素还有助于可持续农业实践,作为支持植物生长和提高农业生产力的肥料的主要成分。硼的多种用途使其成为未来能源、材料和生物技术领域不可或缺的组成部分。© 2023 DPU 保留所有权利。关键词:硼酸;硼酸盐;化学结构;准金属
Stellantis N.V.(NYSE:STLA/ EURONEXT MILAN:STLAM/ EURONEXT PARIS:STLAP)是全球领先的汽车制造商之一,可为所有人提供免费,安全和可访问的出行自由。它因其独特的标志性和创新品牌的投资组合而闻名,包括Abarth,Alfa Romeo,Chrysler,Citroën,Citroën,Dodge,DS Automobiles,Fiat,Fiat,Jeep®,Lancia,Maserati,Maserati,Maserati,Opel,Peemot,Peugeot,Peemot,Peemot,Peemot,Ram,Vauxhall,Free2Move和Leases和Leases和Leases。Stellantis正在运营其“ Dare Forward 2030”,这是一项大胆的战略计划,为实现到2038年成为一家净零碳流动技术公司的雄心勃勃的目标打开了道路,并为其他排放量提供了单位数字的薪酬百分比,同时为所有利益相关者创造了附加的价值。有关更多信息,请访问www.stellantis.com
简介:在可穿戴电子产品的快速发展中,它们对外部功率来源的依赖增加了功率费用,同时导致其在充电期间的运行中断。生物力学能量收割机通过将废物动能转换为电力,为自动可穿戴电子产品提供了有希望的解决方案。尽管成功地将其功率输出从μW推进到MW,但几个挑战仍然存在,包括在μA级处的低输出电流,GΩ级别的高内部阻抗和AC输出限制了其实际应用。常规功率管理电路通常在高频收割机中使用,而无需充分考虑产生的能源损失,当使用较低功率输出的低频收割机时,可能会导致电路故障。
自从引入和发展功能性神经成像以来,对人类大脑功能的研究取得了长足的进步。功能性磁共振成像 (fMRI) 和正电子发射断层扫描 (PET) 一直处于这一发展的前沿,但它们也存在局限性。两者都对参与者的行动能力施加了重大限制,这阻碍了它们在婴儿等具有挑战性的人群中的应用以及在研究涉及运动的神经过程和行为方面的应用。由于相关成本、狭窄的扫描仪环境以及(就 PET 而言)放射性示踪剂的使用,延长或重复监测也很困难。1、2 此外,fMRI 对电子或金属植入物(如起搏器、人工耳蜗、动脉瘤夹和手术器械)有禁忌症。由于 MRI 和 PET 设备体积大、固定,并且要求参与者平躺,因此在日常场景中(例如面对面交谈时)研究大脑非常困难。近年来,漫射光学方法在克服这些局限性方面显示出了巨大的潜力。3、4 功能性近红外光谱 (fNIRS) 使用近红外光来检测大脑功能。它使用放置在头皮上的光源和探测器阵列来监测大脑氧合血红蛋白和脱氧血红蛋白浓度的变化,并可以提供空间分辨率为 3 厘米的二维图像。5、6 高密度漫射光学断层扫描 (HD-DOT) 是使用高密度测量阵列的 fNIRS 方法的外推。尽管在这种情况下“高密度”的定义尚未准确确定,但适当的定义是,HD-DOT 阵列提供具有几种不同源 - 探测器分离的通道,跨越“短分离(SS)”(<15 毫米)到“长”(≥30 毫米)范围,并在整个视野范围内在每个分离处提供重叠的空间灵敏度曲线。现已确定 HD-DOT 可以提供比 fNIRS 或其他弥散光学成像方法更优质的深度分辨图像。7 – 9 从多个重叠通道测量中获得的相互信息提高了空间分辨率,使用多个源 - 探测器分离可提高横向和深度特异性。此外,以不同的源 - 探测器分离进行采样提供了一种减少来自脑外组织信号影响的方法。10、11
自从引入和发展功能性神经成像以来,对人类大脑功能的研究取得了长足的进步。功能性磁共振成像 (fMRI) 和正电子发射断层扫描 (PET) 一直处于这一发展的前沿,但它们也存在局限性。两者都对参与者的行动能力施加了重大限制,这阻碍了它们在婴儿等具有挑战性的人群中的应用以及在研究涉及运动的神经过程和行为方面的应用。由于相关成本、狭窄的扫描仪环境以及(就 PET 而言)放射性示踪剂的使用,延长或重复监测也很困难。1、2 此外,fMRI 对电子或金属植入物(如起搏器、人工耳蜗、动脉瘤夹和手术器械)有禁忌症。由于 MRI 和 PET 设备体积大、固定,并且要求参与者平躺,因此在日常场景中(例如面对面交谈时)研究大脑非常困难。近年来,漫射光学方法在克服这些局限性方面显示出了巨大的潜力。3、4 功能性近红外光谱 (fNIRS) 使用近红外光来检测大脑功能。它使用放置在头皮上的光源和探测器阵列来监测大脑氧合血红蛋白和脱氧血红蛋白浓度的变化,并可以提供空间分辨率为 3 厘米的二维图像。5、6 高密度漫射光学断层扫描 (HD-DOT) 是使用高密度测量阵列的 fNIRS 方法的外推。尽管在这种情况下“高密度”的定义尚未准确确定,但适当的定义是,HD-DOT 阵列提供具有几种不同源 - 探测器分离的通道,跨越“短分离(SS)”(<15 毫米)到“长”(≥30 毫米)范围,并在整个视野范围内在每个分离处提供重叠的空间灵敏度曲线。现已确定 HD-DOT 可以提供比 fNIRS 或其他弥散光学成像方法更优质的深度分辨图像。7 – 9 从多个重叠通道测量中获得的相互信息提高了空间分辨率,使用多个源 - 探测器分离可提高横向和深度特异性。此外,以不同的源 - 探测器分离进行采样提供了一种减少来自脑外组织信号影响的方法。10、11
ASG的愿景是培养一个繁荣与和平的非洲,以目的驱动的领导者具有推动所有人可持续发展的心态,知识和技能。使命是通过提供创新的公共政策教育,尖端研究和政策参与平台来培养领导人来推动非洲的可持续发展,从而促进了针对非洲大陆独特价值观和机遇量身定制的变革性治理。
摘要:弹道冲击负荷下的复合三明治结构可能是防御应用设计的关键点。本文介绍了新的装甲设计,由两个复合板和蜂窝状核心的两个复合板组成,这些板通过0.3口径弹药弹弹APM2受到弹道撞击。复合材料的数值建模在模拟其在撞击载荷下模拟其各向异性行为方面构成了巨大的挑战。考虑了优化故障标准并检查改变材料对弹道反应和能量吸收的影响。使用金属蜂窝核心的复合板和约翰逊 - 库克组成型模型增强的复合组成模型允许在LS-DYNA的撞击负载期间使用失败机理模拟动态塑性变形。通过对实验室测试的反分析,采用了三维模拟。发现数值模拟的结果与实验结果非常吻合。数值研究以评估不同复合材料和各种铝合金对蜂窝芯的影响,其影响速度对混合复合夹层装甲的行为不同。拟议的装甲设计可以对增强新装甲的几代人产生重大影响,并为防御应用实现良好的坚固和轻巧的装甲。
皮革制造过程涉及大量废物处理,会污染环境,有些过程是不可避免的。在目前的研究中,3D 打印技术被用于减少浪费并覆盖皮革中的缺陷区域。本研究重点是使用乳液聚合技术合成丙烯酸粘合剂。分析这些粘合剂的固体含量,以更好地优化用于整理操作的粘合剂量。实验粘合剂的固体含量为 26%。进行了粒度和热重分析,以了解颗粒的大小和形状及其耐热性。这些粘合剂用于皮革整理,并研究了皮革的性能。使用扫描电子显微镜 (SEM) 研究了皮革的表面形态变化。研究了干湿摩擦牢度、涂膜附着力、耐光性和感官性能,发现与对照皮革相比更胜一筹。采用具有轻微缺陷的丙烯酸整理皮革进行 3D 打印,并使用热塑性聚氨酯 (TPU) 作为长丝进行设计。丙烯酸涂层皮革对 TPU 具有良好的附着力,可在短时间内产生大量设计。使用 3D 打印技术将新添加剂添加到皮革中,以产生量身定制的有价值的设计,而不会产生任何浪费
。CC-BY 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 14 日发布。;https://doi.org/10.1101/2025.01.13.632555 doi:bioRxiv 预印本