全球气候变化以及不利的非生物和生物因素正在限制农业生产力,因此加大了作物科学家在满足全球粮食供应日益增长的需求方面面临的挑战。通过植物育种将应用遗传学引入农业,促进了杂交品种的开发,提高了作物的生产率。然而,利用现有基因库开发新品种对作物育种者来说是一个挑战。基因工程有可能通过将新基因引入作物来拓宽遗传多样性。但将外来 DNA 随机插入植物的核基因组通常会导致转基因沉默。植物育种领域的最新进展包括开发一种称为基因组编辑的新型育种技术。基因组编辑技术已经成为一种强有力的工具,可以在基因组的特定位点精确修改作物基因组,这一直是植物育种者的长期目标。目标基因组的精确修改、基因组编辑植物中不存在外来 DNA 以及基因组修改方法更快更便宜是基因组编辑技术的显著特点,导致其在不到十年的时间内广泛应用于作物育种。本综述重点介绍通过精准基因组编辑在作物育种方面的进展。本综述包括:作物改良的不同育种方法概述;基因组编辑工具及其作用机制和最广泛使用的基因组编辑技术 CRISPR/Cas9 在作物改良中的应用,特别是用于改良农艺性状,例如抗病性、非生物胁迫耐受性、除草剂耐受性、产量和品质提高、减少抗营养物质和延长保质期;以及基因组编辑作物监管部门批准的最新情况。本综述还为通过精准基因组编辑开发高产气候适应性作物提供了启示。
摘要 关键信息 首次通过 CRISPR/Cas9 介导的淀粉分支酶基因 SBE2 诱变生产高直链淀粉木薯。摘要 高直链淀粉木薯 ( Manihot esculenta Crantz) 适用于淀粉工业应用和生产供人类食用的更健康的加工食品。在本研究中,我们报告了通过 CRISPR/Cas9 介导的淀粉分支酶 2 (SBE2) 诱变生产高直链淀粉木薯。在所有再生植物中均发现了 SBE2 两个目标外显子的突变;这些突变包括核苷酸插入以及 SBE2 基因中的短或长缺失,被分为 8 个突变系。三个突变体 M6、M7 和 M8 在 SBE2 的第二个外显子中有长片段缺失,没有表现出 SBE2 蛋白的积累。从田间收获后,与野生型相比,这些突变体中的直链淀粉(表观直链淀粉含量高达 56%)和抗性淀粉(高达 35%)含量明显较高,导致快速碘染色后淀粉颗粒呈现深蓝色,淀粉粘度改变,糊化温度和峰值时间更高。进一步的 1 H-NMR 分析表明,淀粉支链度显著降低,支链淀粉的短链减少(聚合度 [DP] 15–25),长链增加(DP>25,尤其是 DP>40),这表明木薯 SBE2 在支链淀粉生物合成过程中催化短链的形成。在淀粉中还检测到了从 A 型到 B 型晶体的转变。我们的研究表明,CRISPR/Cas9 介导的木薯淀粉生物合成基因诱变是产生具有有价值的淀粉特性用于食品和工业应用的新品种的有效方法。
前言与世界人口的持续增加相反,可耕地不断减少。这种情况导致有必要以最有效的方式使用现有的农业场。实际上,当研究生产数字时,尽管农业地区有所减少,但观察到农作物产量的增加。这只有通过提高单位面积的生产率才有可能。提高生产率的最重要因素是将新的已发达品种引入农业生产中。但同时,农民还发展了文化实践,从而提高了农业生产的生产率。但是,自然资源和生态系统平衡的最新恶化导致质疑当前实践的可靠性。危险情况,例如由于过度施肥而导致地下水的富营养化,由于过度使用农药活性成分引起的残留问题以及耐药/害虫剂的新品种的发展危害了可持续性。但是,如果我们有意识地采取行动,就无需遇到这些负面情况,并且有可能降低生产成本。如何?当然,使用微生物通过与植物建立积极关系来做出积极贡献的微生物。某些微生物对植物根部区域的根际环境有积极影响,而有些微生物对地上部分的植物球有积极的影响,从而对营养和耐药性提供了积极的影响。即使某些微生物在植物根部内生长,它们的延伸也扩展到周围土壤中的其他植物。植物通过此分支共享和交流。此外,这些扩展的生长对植物营养和耐旱性有重大贡献。为了防止农药的使用,某些有利的微生物在减少疾病或有害生物种群中起着至关重要的作用,因为它们是引起疾病的其他微生物的自然敌人。在这本书中,有关一些微生物的重要信息,这些微生物是可以与植物建立不同方式并表现出不同积极作用的一些微生物。我们代表所有作家表示尊重,并希望我们是我们的书的编辑,将使整个农业社区受益。我们还声明,我们对这本书的任何反馈都开放。
遗传和表观遗传调控生物标记在植物抗逆分子机制和作物育种方法中起着至关重要的作用。由于不利的生长条件阻碍了作物产量和全球粮食安全,养活不断增长的全球人口是一项艰巨的任务。为了很好地解开上述机制,科学家们不得不整合多个植物研究领域,因此,他们必须具备丰富的生物信息学知识和工具来管理大数据集。从本质上讲,本主题中包含的常规文章涉及农民和股东面临的现代问题。为了解决这些问题,科学家们采用了多方面的研究方法,涵盖植物生理学、分子生物学、遗传学、表观遗传学和组学等各个领域,以及最先进的植物科学和尖端方法,这些方法由复杂的技术和先进的方法提供支持,包括全基因组关联研究 (GWAS) 和表观遗传学方法,以揭示植物对高温、盐分、干旱和病原体侵袭等胁迫(生物和非生物)的耐受机制。因此,可以将进化的分子技术投入到未来的作物育种策略中,以提高生产力并产生更能抵御环境挑战和抵抗病原体侵袭的新品种。值得注意的是,Kumar 等人通过两种不同的方法揭示了遗传可塑性的分子基础对水稻种植中不同环境条件的关键重要性。本专题汇集了新发现和有用方法来促进植物科学研究。它阐明了表观遗传学变化(例如 DNA 甲基化、组蛋白(去)乙酰化和其他翻译后修饰 (PTM))在基因调控(抑制或诱导)中的作用,以及组学(基因组学、表观基因组学、转录组学、代谢组学、离子组学和蛋白质组学)在检测应激反应基因中的作用。使用
摘要:马铃薯是世界上最重要的非谷类作物,然而,马铃薯的遗传增益传统上一直受到作物生物学的延迟,主要是自交四倍体品种的遗传杂合性和生殖系统的复杂性。新型定点基因改造技术为设计气候智能型品种提供了机会,但它们也为马铃薯育种带来了新的可能性(和挑战)。由于马铃薯品种表现出显著的生殖多样性,并且它们的胚珠倾向于发展出类似无融合生殖的表型,因此对马铃薯生殖基因进行修改正在开辟马铃薯育种的新领域。开发二倍体品种而不是四倍体品种已被提议作为填补遗传增益空白的替代方法,这是通过使用基因编辑的自交亲和基因型和自交系来利用杂交种子技术来实现的。类似地,调节二倍体或四倍体马铃薯中未减数配子的形成和合成无融合生殖可能有助于加强向二倍体杂交作物的过渡或增强基因渗入方案并固定四倍体品种中高度杂合的基因型。无论如何,诱导无融合生殖样表型将缩短开发新品种的时间和成本,因为这样可以通过真种子进行多代繁殖。在这篇评论中,我们总结了目前关于马铃薯生殖表型和潜在基因的知识,讨论了利用马铃薯的自然变异性调节种子形成过程中的生殖步骤的优缺点,并考虑了合成无融合生殖的策略。然而,在我们能够完全调节生殖表型之前,我们需要了解这种多样性的遗传基础。最后,我们设想基因库在这一努力中发挥积极、核心的作用,通过对正确基因型的基因库种质和新引进品种进行表型分析,为科学家和育种者提供可靠的数据和资源,以开发创新,利用市场机会。
新闻新加坡新闻新加坡,2024年11月11日,新加坡新加坡启动了两项新学位课程,以及新加坡的Nanyang Technology University,新加坡(NTU Singapore),将在8月2025年8月2025年引入两个新的化学和药品制造业。这两个计划旨在满足预期的全球对机器人主义者的需求,因为行业继续自动化和培养人才管道,并具有独特的技能套装,涵盖了化学和化学工程,以实现新加坡发展的高科技经济。NTU副总裁兼教务长Ling San教授说:“ NTU与行业合作伙伴紧密合作,设计了预测全球趋势的学术产品,以便我们的学生学习的技能将保持相关性并满足不断发展的工作场所的要求。>NTU副总裁兼教务长Ling San教授说:“ NTU与行业合作伙伴紧密合作,设计了预测全球趋势的学术产品,以便我们的学生学习的技能将保持相关性并满足不断发展的工作场所的要求。“这反映在我们的两个新学位课程中,这将有助于我们的学生在化学和制药行业领域的机器人技术和高级制造业的机会 - 两个对于新加坡的增长至关重要的领域。这些计划还与AI相关的要素合并,以确保我们的学生在技术增强的世界中继续蓬勃发展。”机器人技术学士学位的重点是获得与行业需求相关的实用和未来的机器人技能,并且与新加坡成为一个聪明国家的愿景一致工程工程和合成化学的双重主要工程科学学士学位旨在培养可以导航化学和化学工程的新型毕业生的新品种,这是当前缺乏的独特技能 - 以及Boost Singapore成为高级制造和创新的枢纽的努力。
什么是园艺生物技术?园艺生物技术主要努力通过诸如基因工程和细胞操纵等前沿技术检查新的生物学现象。同时,园艺生物技术努力通过系统地收集和研究有关园艺产品的产生和使用的新信息来创建前沿技术,包括耕种技术,生产以及新品种的饲养和使用。为此,该计划着重于将基础科学研究与实践科学相结合,这些科学可以应用于实践领域,例如生产和改善蔬菜,水果和鲜花,以丰富人类的生活。园艺生物技术为学生提供了各种课程,这些课程将提供园艺和生物技术的基本和应用知识。为学生直接接触橄榄培养,培养,花卉培养,植物病理学,植物育种和植物生物技术的实践,园艺生物技术系维护了各种实验的设施,例如实验,果园,果园,绿色房屋和实验室,用于组织培养,植物生理学,植物学,植物,植物,植物,植物,植物,植物,植物,植物和生物学繁殖。通过此类设施的动手工作,学生将获得园艺和生物技术领域的创造潜力。该部门还强烈鼓励大三学生和老年人参加各种研究计划。通过这种参与,学生将能够获得成功职业所必需的学科中最新的知识。园艺部成立于1974年,在首尔校园内有30名普通本科新生,并于1983年搬到Suwon校园。自1984年以来,普通学生的人数已增加到每年40个。研究生院自1974年以来一直在园艺硕士课程中运营硕士课程,博士学位。自1976年以来的园艺计划。凭借王亨大学的教育目标以及园艺生物技术的科学性质,园艺生物技术系努力努力使每个学生成为一个学者,他们可以通过获得园艺生物技术的深刻知识和理论来为创造一个文明世界的创造。
生产力(Abbass等,2022)。因此,它们对与食品相关的独特品质和地理指示构成了威胁。在过去的几十年中,气候变化已经开始影响茄科作物,极端的天气模式将显着影响番茄,胡椒和茄子的产量和质量(Lee等,2018; Bhandari et al。,2021; 2021; Suman,2022; 2022; 2022; 2022; Toppino等。,2022年)。尽管某些农业实践和耕种技术可能会提供临时应对机制,但需要实施长期策略来应对脆弱地区气候变化的挑战。繁殖策略在开发气候富裕品种以及常规育种技术(CBT)和新育种技术(NBT)方面起着至关重要的作用,为增强低输入生产系统中农作物弹性提供了强大的工具(Razzaq等人,2021年,2021年; Xiong等,20222)。从历史上看,育种计划一直集中在开发抗疾病的品种上以确保可持续生产(Poczai等,2022)。通过选择性地育种自然抗性或纳入野生亲戚的抗药性基因,育种者可以增强农作物对常见疾病的韧性,例如晚枯萎病,细菌枯萎病和病毒感染。繁殖工作还针对农艺性状,可以减轻气候变化对溶阿酸作物的影响,包括干旱耐受性,耐热性,耐水性(WUE)和营养吸收效率(NUE)。同时,增强水果质量的属性是番茄,胡椒和茄子的关键育种目标(Bebeli和Mazzucato,2009年)。因此,主要的育种重点是改善特征,例如avor,营养含量,质地和保质期,将它们纳入新品种,以确保这些农作物对消费者保持吸引力并适应不断变化的市场需求。在本文中,将审查有关下一代基因分型和 - 组技术的最新技术,用于审查茄科家族中多种弹性特征的分子预测,旨在为恢复和弹性设施(RRF)NextGeneration externeration Ensteration eutlanting Plans建立研究活动的起点。
Loriculture行业是生活方式园艺行业的一部分,价值3000亿美元。生活方式园艺包括许多垂直的垂直耕种,包括切花(104亿美元),活植物(1000亿美元),切成叶(14.8亿美元),花朵种子(76.4亿美元),活树木,植物,植物,鳞茎,花朵(26.5亿美元),诸如60亿美元的花朵(uds ofd ofd off Flowers)(Uds udds),价值(uds),价值(uds),价值(uds),价值(uds udds),价值(uds),价值(uds),价值(uds udds),价值 - 价值(价值)(价值)(uds dru udd-audd and udd-udd ud udd-audd-audd audd)十亿),便利设施园艺,草皮和树木植物等。花一直是印度文化不可或缺的一部分。它们是出于美学目的而被种植的,也是为了吸收和提取营养素。传统花仍然是印度花卉文化的支柱,在296,000公顷的宽松花朵中,有95%的面积,产生2,284,000吨。切花在其余5%的面积中生长,产生946,000吨不同的切花(高级估计2023-24)。对新品种的需求一致,以满足各种消费者的喜好,自然资源的收缩以及气候变化,点燃的气候变化,以寻找另一种耕种方法。数字技术在精确农业(IoT)和人工智能(AI)中发挥了重要作用。这些技术使用无人机,传感器和GPS映射来优化农作物输入,其产量随之增加并大幅减少废物。对植物生长和健康的监测将使种植者能够补充精确的施肥和灌溉以及有害生物管理实践,从而最终降低了环境对花卉产量的影响。此外,部署机器人技术和自动化在降低劳动力成本的效率随着花朵种植的效率方面发挥了重要作用。例如,自动播种兼收购系统执行的任务比手动劳动降低了降低人工成本的速度要快得多。智能技术的应用正在发达国家的花卉文化中迅速发展。本文讨论了花卉文化数字应用领域的最新发展。
可持续的粮食生产系统在应对粮食安全和环境可持续性的全球挑战方面拥有巨大的希望。该研究主题围绕着包含速度育种技术,垂直水培和数据驱动的智能传感器应用的食品系统。速度育种技术可以快速生成新的植物品种,以所需的特征加速作物发展,例如耐药性,耐旱性,高营养价值和高生产率。这些技术通过先进的遗传学,人工照明和受控环境实现,可以在一年内生长和收获多代植物,超过典型的一到两代基于传统的基于田间的繁殖。通过使用分子标记来分析特定的农作物基因组,育种者可以识别和表征遗传变异。这些知识有助于选择理想的性状,例如害虫或抗病性和提高产量。标记辅助选择(MAS)和基因组选择(GS)是开创性的方法,可提高性状选择的效率和准确性。MAS在繁殖过程的早期就确定了理想的特征,而GS则可以预测植物在生长前的植物性能,并加速育种。这些技术具有显着改善的繁殖效率,可以在更短的时间内开发新品种和品种。11篇文章发表在该研究主题中,由不同学科的专家撰写。第一项研究是Choi等人的。Tetrault等人的提交。使用富含营养的水代替土壤的垂直水培法,可以使每单位土地,有效的资源利用和全年生产能够更高的收益率,而数据驱动的智能传感器可以优化生长条件并自动化营养递送和收获等过程。通过控制光周期和光质量来开发胡椒(辣椒辣椒)的速度育种方案。作者透露,辣椒植物中EPP和FR Light的综合影响会影响流动基因的表达,从而有价值地了解速度育种系统通过减少生成时间加快遗传研究的潜力。是一篇假设和理论文章,它定义了再循环水产养殖系统(RAS)与水培种植系统(HCS)的整合到具有共享水处理单元的单个系统中。