全球大流行很可能是通过人畜共患病传播到人类的,其中呼吸道病毒感染与粘膜系统相关的气道。在已知的大流行中,五个是由包括当前正在进行的冠状病毒2019(Covid-19)在内的呼吸道病毒引发的。在疫苗开发和治疗剂中的惊人进步有助于改善传染剂的死亡率和发病率。然而,生物体复制和病毒通过粘膜组织传播,不能由肠胃外疫苗直接控制。需要一种新型的缓解策略,以引起强大的粘膜保护并广泛中和活动以阻碍病毒进入机制并抑制传播。本综述着重于口腔粘膜,这是病毒传播的关键部位,也是引起无菌免疫力的有希望的靶标。除了审查人畜共患病毒病毒和口腔粘膜组织发起的历史大流传学外,我们还讨论了口服免疫反应的独特特征。我们解决了与开发新型治疗剂有关以在粘膜水平引起保护性免疫的障碍和新的前景,以最终控制传播。
1 印度韦洛尔基督教医学院干细胞研究中心(班加罗尔 inStem 的一个单位);2 印度特里凡得琅 Sree Chitra Tirunal 医学科学与技术研究所;3 美国伯克利加州大学伯克利分校创新基因组学研究所;4 美国旧金山格拉德斯通研究所数据科学与生物技术研究所;5 澳大利亚悉尼新南威尔士大学生物技术与生物分子科学学院;6 印度卡纳塔克邦马尼帕尔高等教育学院;7 印度韦洛尔基督教医学院暨医院血液学系;8 日本茨城县理化学研究所生物资源中心细胞工程部;9 日本红十字会中央血液研究所血液服务总部研究与开发部,日本东京;10 印度韦洛尔基督教医学院生物化学系; 11 加州大学洛杉矶分校微生物学、免疫学和分子遗传学系,美国洛杉矶;12 瑞士苏黎世生物系分子健康科学研究所
● 抗炎分子,如 TGF-beta、BDNF ● 产生神经修复因子,如精氨酸转化产生的胶原蛋白 ● 氧化磷酸化状态 ● 健康的免疫反应:M1 小胶质细胞利用促炎细胞因子和吞噬作用杀死病原体,然后转变为 M2
摘要如今,医疗和药物领域的快速改善增加了药物的多样性和使用。然而,诸如在疾病治疗中使用多种或联合药物的问题以及对非处方药的无敏使用的问题引起了人们对药物的副作用概况和治疗范围以及由于药物浪费而引起的副作用概况和治疗范围。因此,对各种培养基(例如生物学,药物和环境样本)中药物的分析是讨论的重要主题。电化学方法对于传感器应用是有利的,因为它们的易于应用,低成本,多功能性,高灵敏度和环保性。碳纳米材料,例如钻石样碳薄膜,碳纳米管,碳纳米纤维,氧化石墨烯和纳米原子石用于增强具有催化作用的电化学传感器的性能。为了进一步改善这种效果,它旨在通过将不同的纳米材料一起或与导电聚合物和离子液体等材料一起使用不同的碳纳米材料来创建混合平台。在这篇综述中,最常用的碳纳米型将根据电化学特征和理化特性进行评估。此外,将在过去五年中对最新研究中对电化学传感器的最新研究产生的影响进行检查和评估。
摘要 成簇的规律间隔短回文重复序列(CRISPR)和CRISPR相关蛋白(Cas)是细菌和古菌中对抗入侵核酸和噬菌体的适应性免疫系统。根据效应蛋白的组成,CRISPR/Cas大致分为多种类型和亚型。其中,VI型CRISPR/Cas系统尤受关注,有VI-A、VI-B、VI-C和VI-D四个亚型,被认为从转座子进化而来。这些亚型在结构架构和机制上表现出差异,具有多种Cas13a(C2c2)、Cas13b1(C2c6)、Cas13b2(C2c6)、Cas13c(C2c7)和Cas13d效应蛋白。CRISPR/Cas13 核糖核酸酶将前 crRNA 加工成成熟的 crRNA,后者在病毒干扰过程中靶向并敲除噬菌体基因组的单链 RNA。这种蛋白质的高特异性 RNA 引导和 RNA 靶向能力使其能够与多种效应分子融合,为 Cas13 介导的 RNA 靶向、追踪和编辑领域开辟了新途径。CRISPR/Cas13 具有靶向包括植物在内的 RNA 的独特功能,因此可以用作一种新的工具,用于工程干扰植物病原体(包括 RNA 病毒),具有更好的特异性,并可用于植物中的其他 RNA 修饰。荧光探针标记的失活可编程 Cas13 蛋白可用作体外 RNA 研究的替代工具。工程化的 Cas13 也可用于可编程的 RNA 编辑。CRISPR/Cas13 的高靶向特异性、低成本和用户友好的操作使其成为多种基于 RNA 的研究和应用的有效工具。因此,本章的重点是 CRISPR/Cas 系统的分类、VI 型 CRISPR/Cas 系统的结构和功能多样性,包括其发现和起源、机制以及 Cas13 在植物 RNA 编辑中的作用。
我们介绍了Multidiff,这是一种新颖的方法,用于从单个RGB图像中始终如一地进行新颖的视图综合。从单个参考图像中综合新观点的任务是大自然的高度不足,因为存在多种对未观察到的区域的合理解释。为了解决这个问题,我们以单核深度预测变量和视频扩散模型的形式结合了强大的先验。单核深度使我们能够在目标视图的扭曲参考图像上调节模型,从而提高了几何稳定性。视频扩散先验为3D场景提供了强大的代理,从而使模型可以在生成的图像上学习连续和像素精度的对应关系。与依靠容易出现漂移和误差累积的自动格言形象生成的方法相反,Multidiff共同综合了一系列帧,产生了高质量和多视图一致的RE-
白血病 (ALL) 5 。长春花碱用于治疗乳腺癌、睾丸癌和神经母细胞瘤 6 。长春地辛是一种从长春花碱中提取的生物碱,已显示出对抗霍奇金淋巴瘤和非霍奇金淋巴瘤、肺癌和乳腺癌的活性 7 。长春瑞滨用于治疗已发展到周围组织或身体其他部位的非小细胞肺癌 (NSCLC) 8 。根据最近的一项研究,长春胺是少数对活细胞有积极作用的生物碱之一。通过增加血流量和区域葡萄糖的吸收,它可以作为脑代谢增强剂,对缺血和缺氧具有神经保护作用,并具有抗氧化和抗凋亡特性。长春胺被认为是治疗镰状细胞病的潜在成分,因为它似乎可以作为活细胞中的氧载体 9 。长春胺是一种单萜吲哚生物碱(图1),主要存在于长春花叶中10。在本研究中,根据国际协调会ICH Q2(R1)指南11的建议,建立了高效薄层色谱法(HPTLC)对长春花叶甲醇提取物中的长春胺进行定量分析。
抗生素在被发现之时被认为是治疗细菌感染的灵丹妙药,但微生物通过多种强大的机制来对抗抗生素,从而产生了多重耐药 (MDR) 和广泛耐药 (XDR) 菌株(Eichenberger 和 Thaden,2019 年;Terreni 等人,2021 年;Yadav 等人,2022 年)。病原体获得抗生素耐药性的方式有多种,包括病原体基因组的遗传变异、抗生素的不选择性使用、生物膜的形成等(Santos-Lopez 等人,2019 年;Singh 等人,2019 年)。由于此类感染难以治疗,了解抗菌素耐药性 (AMR) 的产生机制至关重要,这样才能制定预防此类感染的策略(Lomazzi 等人,2019 年;Hu 等人,2020 年;Moo 等人,2020 年)。本研究课题的目标是重点介绍抗生素耐药性领域的最新进展,同时强调未来研究的重要方向和新可能性。我们预计此处介绍的研究将引发社区关于新型抗菌药物和抗生素耐药性的讨论,从而导致最佳实践在临床、公共卫生和政策环境中的应用。总体而言,本研究课题发表了四篇研究文章和六篇评论文章。Wang 等人发表的一篇研究文章。报道了2017年至2022年中国西南地区结核病疑似人群中非结核分枝杆菌 (NTM) 的流行病学研究。在这项研究中,鉴定出了主要的 NTM 分离株 MAC 和 M. chelonae/M. abscessus,并观察到中国西南地区 NTM 的分离率在过去几年中呈上升趋势。感染病例为老年患者、免疫系统受损的 HIV 感染者。经评估,观察到阿米卡星、莫西沙星、克拉霉素和利奈唑胺等抗生素对缓慢生长的分枝杆菌表现出有效的抗菌活性,而利奈唑胺和阿米卡星对快速生长的分枝杆菌表现出相对更好的抗菌活性。石等人发表的另一篇研究文章。研究了深圳市住院儿童呼吸道分离的耐多药肺炎链球菌的流行情况及耐药特点,发现非疫苗血清型菌株占肺炎球菌分离株总数的46.6%,疫苗血清型的耐多药率(MDR)分别为19F(99.36%)、19A(100%)、23F(98.08%)、6B(100%)、6C(100%),非疫苗血清型的耐多药率分别为15B(100.00%)、6E
系统寿命和阀门循环寿命之间的相关性。CAMFlow 控制方案已在 600W 霍尔推进器上成功测试和验证。这包括开环、闭环和冷“硬”启动操作。控制阀循环超过 1.2 亿次脉冲,同时保持非常低的泄漏率,从而显示出长寿命潜力。CAMFlow 单元目前专注于流量在 0-10 mg/s 范围内的较小霍尔效应或网格离子电力推进系统。然而,该技术广泛应用于更广泛的商业市场的更大流量范围。CAMFlow 系统将接受高达 2,500 psia 的输入压力并将输出流量控制在 <±3%。通过使用较便宜的太空级组件,CAMFlow 技术提供了可靠的低成本流量控制器,非常适合亚千瓦霍尔/离子推进器。
