1 国土安全部/国家情报总监办公室,分析交换计划,新兴技术和国家安全,2018 年 7 月 26 日,https://www.dhs.gov/sites/default/files/publications/2018_AEP_Emerging_Technology_and_National_Security.pdf。2 外交关系委员会,创新与国家安全:保持我们的优势,2019 年 9 月更新,(“保持我们的优势”),https://www.cfr.org/report/keeping-our-edge/。3 “国家安全创新基地”是指“美国的知识、能力和人才网络——包括学术界、国家实验室和私营部门——将想法转化为创新,将发现转化为成功的商业产品和公司,并保护和改善美国人的生活方式。富有创造力的美国人的天才,以及使他们成为可能的自由制度,对美国的安全和繁荣至关重要。”白宫,《美国国家安全战略》,2017 年 12 月,21,https://trumpwhitehouse.archives.gov/wp-content/uploads/2017/12/NSS-Final-12-18-2017-0905.pdf。4 国防部长办公室,《2020 财年向国会提交的工业能力报告》,13,https://media.defense.gov/2021/Jan/14/2002565311/-1/-1/0/FY20- INDUSTRIAL-CAPABILITIES-REPORT.PDF。5 “与克里斯托弗·雷的对话”,外交关系委员会(活动),2019 年 4 月 26 日,https://www.cfr.org/event/conversation-christopher-wray-0。事实上,2011 年至 2018 年,美国司法部约 90% 的经济间谍案件涉及中国。请参阅国家反情报和安全中心主任威廉·埃瓦尼纳在 2019 年国际法律技术协会 LegalSEC 峰会上准备发表的主旨演讲,https://www.dni.gov/files/NCSC/documents/news/20190606-NCSC-Remarks-ILTA-Summit_2019.pdf。6 “与克里斯托弗·雷的对话”。 7 Christopher Wray,“与我们的私营部门伙伴合作打击网络威胁”,演讲稿,联邦调查局(网站),2021 年 10 月 28 日,https://www.fbi.gov/news/speeches/working-with-our-private-sector-partners-to-combat-the-cyber-threat-wray-ecny-102821。8 Brian Barrett,“中国黑客因长达十年的犯罪和间谍活动被指控”,连线,2020 年 7 月 21 日,https://www.wired.com/story/chinese-hackers-charged-decade-long-crime-spying-spree/。
在 [13] 中,作者通过 Hugin 软件使用面向对象的信念网络 (OOBN) 评估了几种不同的失控事故 (LOC) 模型。本研究旨在构建飞行失控事故 (LOCAF) 的通用模型。该通用模型可用于通过导出整个子网(例如,机组人员绩效子网)来改进其他 OOBN。在构建 LO-CAF 通用模型的过程中,作者使用了美国国家运输安全委员会 (NTSB) 1987 年至 2009 年的事故数据集,根据三个主要根本原因对事故类型进行分类:人为因素、系统组件和外部因素。尽管它在建模 LOCAF 方面很重要,并且“导致发现尚不存在缓解措施的新兴因果因素的脆弱性,从而为未来可能的研发 (研究和开发) 工作提供信息”,但本研究仅限于 LOCAF 背景 [14]。
任何人都可以自由访问以“开放获取”形式提供的作品的全文。根据知识共享许可提供的作品可根据该许可的条款和条件使用。如果适用法律未免除版权保护,则使用所有其他作品均需要获得权利人(作者或出版商)的同意。
1. V. Leinonen、R. Vanninen、T. Rauramaa,颅内压升高和脑水肿。Hand Clinic 145 , 25-37 (2018)。2. N. MacAulay、T. Zeuthen,中枢神经系统各区室之间的水运输:水通道蛋白和协同转运蛋白的贡献。Neuroscience 168 , 941-956 (2010)。3. M. Amiry-Moghaddam、OP Ottersen,脑内水运输的分子基础。Nat Rev Neurosci 4 , 991-1001 (2003)。4. S. Nielsen 等人,神经胶质细胞中水运输的特化膜结构域:大鼠脑内水通道蛋白-4 的高分辨率免疫金细胞化学。J Neurosci 17 , 171-180 (1997)。 5. EA Nagelhus、OP Ottersen,水通道蛋白-4 在脑中的生理作用。Physiol Rev 93,1543-1562(2013)。6. MC Papadopoulos、AS Verkman,水通道蛋白-4 和脑水肿。Pediatr Nephrol 22,778-784(2007)。7. GT Manley 等人,小鼠中水通道蛋白-4 缺失可减轻急性水中毒和缺血性中风后的脑水肿。Nat Med 6,159-163(2000)。8. GT Manley、DK Binder、MC Papadopoulos、AS Verkman,从水通道蛋白-4 缺失小鼠的表型分析对中枢神经系统中水运输和水肿的新见解。神经科学 129 , 983-991 (2004)。9. NN Haj-Yasein 等人,胶质细胞条件性缺失水通道蛋白 4 (Aqp4) 可降低血脑水吸收并赋予血管周围星形胶质细胞端足屏障功能。美国国家科学院院刊 108 , 17815-17820 (2011)。10. X. Yao、S. Hrabetova、C. Nicholson、GT Manley,水通道蛋白 4 缺陷小鼠的细胞外空间增加而曲折度没有改变。神经科学杂志 28 , 5460-5464 (2008)。11. S. Strohschein 等人,水通道蛋白 4 通道对海马中 K+ 缓冲和间隙连接偶联的影响。 Glia 59 , 973-980 (2011)。12. XN Zeng 等,水通道蛋白-4 缺乏下调星形胶质细胞中的谷氨酸摄取和 GLT-1 表达。Mol Cell Neurosci 34 , 34-39 (2007)。13. RM Bill、K. Hedfalk,水通道蛋白 - 表达、纯化和表征。Biochim Biophys Acta Biomembr 1863 , 183650 (2021)。
目前的研究旨在确定最新类的抗真菌,抗菌和抗结核铅化合物。通过使用羧酰胺链接,最近的研究设计并合成了芳基胺的一类独特的基于吡唑的分子杂交。使用多步法,制备所需的吡唑羧酰胺衍生物。使用1 HNMR,C 13 NMR和质谱技术对化合物进行表征。这些物质的能力是抗菌,抗真菌和抗结核药的能力。针对革兰氏阳性和革兰氏阴性病原体和真菌菌株测试的所有化合物均显示出良好的抗菌活性。针对革兰氏阴性病原体,化合物5i表现出有效的活性,化合物5K表现出对革兰氏阴性菌株的有效活性,化合物5a,5i和5J化合物对真菌菌株和结核分枝杆菌H37RV菌株的抗菌菌株建立了有效活性。
为了应对不断演变的疫苗衍生 2 型脊髓灰质炎病毒 (cVDPV2) 风险,全球根除脊髓灰质炎行动 (GPEI) 合作伙伴正在与各国密切合作,部署另一种创新的疫情应对工具——新型口服脊髓灰质炎疫苗 2 型 (nOPV2)。世界卫生组织 (WHO) 预认证计划于 2020 年 11 月 13 日发布了针对 nOPV2 的紧急使用清单 (EUL) 建议。WHO 的 EUL 程序旨在评估和列出未经许可的疫苗、治疗药物和诊断方法,以便将其用于应对国际关注的突发公共卫生事件 (PHEIC)。nOPV2 是第一个获得 EUL 的疫苗,为其他紧急疫苗铺平了道路。在本报告中,我们总结了在 EUL 下推出 nOPV2 的途径。 2022 由 Elsevier Ltd. 出版。这是一篇根据 CC BY 3.0 IGO 许可 (https://creativecommons.org/licenses/by/3.0/) 开放获取的文章。
两种或多种不同材料的组合具有一系列优势。金属陶瓷复合材料是这些苛刻应用的天然候选材料,因为金属和陶瓷具有多种不同的物理特性,这赋予了最终产品诱人的机械、电、热和生化特性和性能组合。在本期特刊中,我们征集原创实验和理论论文,以及专注于纳米和微米级金属陶瓷复合材料制备相关新科学和技术进展的综合评论。本期特刊的范围涵盖了非常广泛的主题,包括基本概念、与此类复合材料有关的实验和理论研究、组成材料浓度和复合介质几何参数的影响、确定物理化学性质、微观结构和微观结构-性能关系的研究、通过各种制造和加工技术操纵性能、金属陶瓷连接、建模和模拟。
隔离:富集的培养技术用于分离差异的细菌菌株。矿物质盐培养基(MSM)用于细菌分离。将一克土壤样品转移到一个含有diflufenican的MSM的无菌埃伦米尔烧瓶中。将样品在22°C下孵育14天。将Erlenmeyer烧瓶样品的系列稀释液铺在含有Diflufenican的MSM琼脂平板上,以分离单个菌落。细菌的选择是基于表型差异的。图2。选择在营养琼脂培养基上生长的分离物。表1。研究中使用的分离株。识别:分离株在营养肉汤中培养24小时。根据制造商的方案,使用商业试剂盒分离细菌基因组DNA。将分离的DNA经过Sanger测序程序进行,并通过将其序列与使用BLAST软件的国家生物技术信息数据库(NCBI)进行比较来确定分离株中鉴定的物种。
通过纳米颗粒传递药物的出现在使医学选择性和高效方面发挥了关键作用,这将为制药行业的新药物输送机制铺平道路。纳米技术新领域;预计这些快速进步的影响将在整个药物递送行业中都能感受到,从而影响从口服药物到注射剂,从而导致更有效和有针对性的治疗递送。纳米颗粒由于其许多优势,例如毒性降低,治疗成本降低,生物利用度提高和药物的专利持续时间增加,因此越来越多地用于药物输送。这将大大增强药物治疗的能力,减少[3]此外,还将探索纳米颗粒作为新分子对比剂的基础,从而建立了从可溶和不稳定的生物材料到有效治疗的桥梁。拥有最大的设计空间之一;不仅由于其独特的细胞内穿透性特性,多药耐药性生物学靶标的生物利用度以及对生物屏障的规避,这使纳米颗粒成为有望靶向药物递送的有希望的前景,也使纳米颗粒通过药物的开发来预示着新的药物发现时代。[4]
尽管最近批准了一些用于治疗炎症性肠病 (IBD) 的药物,但仍然需要大量新技术来提高药物疗效,通过改善特定部位的药物输送,同时减少全身暴露。这些技术必须解决配方方面的挑战;特别是,液体、肽或蛋白质药物很难使用现有的延迟和延长口服释放技术来配制。它们还可能通过将更高剂量直接输送到炎症部位来提高某些药物的疗效并减少全身暴露。一种新型药物输送系统正在开发中,用于在胃肠道 (GI) 的预定部位进行输送。这种自主机械胶囊使用基于反射光的算法将可溶性药物输送到预定位置。与其他传统的延迟释放口服制剂相比,该系统具有显着的优势,因为它独立于 pH 值和运输时间等人体生理变量发挥作用,并且可以输送液体制剂、肽和蛋白质。这样的系统可以确保可预测的高腔内药物暴露和上消化道中有限的降解或全身吸收,因此非常适合治疗 IBD 和结肠癌等疾病。