添加剂制造(AM; 3D打印)是一种制造方法,它可以从数字设计文件中创建一个对象层。AM的最新进展现在还允许实现功能组件,除了早期采用原型制作。AM的主要优点是设计自由,它通过减法,形成性或织物制造方法促进了无法或实用的结构的使用。航空航天和医疗行业将AM纳入其生产链中,领导了。但是,天文学界的吸收速度很慢。2017年,一个多机构的欧洲欧洲团队开始在A2IM(添加剂天文学综合组件制造)上合作,这是一个较大的Opticon框架(天文学的光学红外协调网络)中的工作包,并由欧洲委员会委员会2020计划。Schnetler等人在此会议上介绍了A2IM工作包的概述。(2020),1在Farkas等人的论文中讨论的其他A2IM原型贡献。(2020),2 Vega等。(2020)3和Roulet等。(2020)。4本文介绍了针对纳米 - 卫星应用的轻量级镜像技术的A2IM原型开发。
近年来,双重方法已经非常受欢迎,可以在机器学习模型的有效估计高维超参数上。迄今为止,二进制pa-Rameters是通过连续放松和四舍五入策略来处理的,这可能导致解决方案不一致。在这种情况下,我们通过基于适当的罚款术语求助于等效的连续二线重新构造,以应对混合二元超参数的挑战优化。我们提出了一个算法框架,在合适的假设下,可以保证提供混合二进制解决方案。此外,该方法的一般性允许在提议的框架内安全地使用现有的连续折叠求解器。我们评估了两个特定的机器学习问题的方法的性能,即,回归问题中的群 - 符号结构的估计和数据蒸馏问题。报告的结果表明,我们的方法具有基于放松和舍入的最新方法竞争。
抽象的单细胞RNA测序(SCRNA-SEQ)提供了单个细胞的表达谱,但无法保留关键的空间信息。另一方面,空间杂交技术能够分析组织切片中的特定区域,但缺乏单细胞分辨率检查的能力。为了克服这些问题,我们提出了单细胞和空间转录组学对齐(SSA),这是一种新型技术,它采用最佳传输算法来根据其表达曲线将单个细胞从SCRNA-SEQ ATLAS分配到其在实际组织中的SPATIAL位置。SSA与现有方法相比,已经证明了具有100,064个细胞的高分辨率空间转录组人乳腺癌数据集的10个半模拟数据集。这一进步为研究人员提供了一种精致的工具,以深入了解细胞空间组织与基因表达之间的关系。
剂量。在研究期间没有报告死亡,严重或严重的茶(表1)。所有剂量水平的HB0034清除均表现出线性PK特性,HB0034的有效半衰期约为
人类智能由多种认知功能构成,这些功能直接或间接地由各种外部刺激激活。认知科学和神经科学的计算方法部分基于这样的观点:对此类认知功能和疑似与之对应的大脑操作进行计算模拟,有助于进一步揭示有关这些功能和操作的知识,特别是它们如何协同工作。这些方法还部分基于这样的观点:实证神经科学研究,无论是在此类模拟之后进行的(因为模拟和实证研究实际上是互补的),还是其他方式,都可以帮助我们构建更好的人工智能系统。这是基于这样的假设:大脑看似运作的原理,如果可以理解为计算的原理,至少应该作为人工智能系统运作的原理进行测试。本文探讨了大脑的一些原理,这些原理似乎是大脑自主、问题自适应性质的原因。这里阐述的大脑操作系统 (BrainOS) 是对正在进行的工作的介绍,该工作旨在创建一个强大的集成模型,将神经网络背后的联结主义范式和人工智能许多其他领域背后的符号范式结合起来。BrainOS 是一种自动方法,它根据 (a) 手头的输入、(b) 先前的经验(先前解决问题尝试的结果历史)和 (c) 世界知识(以符号方式表示并用作解释其方法的手段)选择最合适的模型。它能够接受多种混合的输入数据类型、处理历史和目标、提取知识并推断情境背景。BrainOS 的设计旨在通过其不仅能够选择最合适的学习模型,还能够根据手头的任务有效地校准它来提高效率。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月17日发布。 https://doi.org/10.1101/2024.11.29.626080 doi:Biorxiv Preprint
(a)Anomala albopilosa的Elytron的反射和透射光学显微照片。(b)Anomala albopilosa的Elytron的透射光学显微照片。(c)左圆极化光板下方的Anomala albopilosa的金属绿色反射。(d)在右圆极化光板下没有反射。(E)左圆极化光板下方的金属紫色反射。(f)在右圆极化光板下没有反射。(g)左右圆形偏振板下的照片,L + R表示左右极化器的重叠。信用:下一材料(2025)。doi:10.1016/j.nxmate.2025.100516
这是一篇文章的PDF文件,该文件在接受后经历了增强功能,例如添加了封面和元数据,并为可读性而格式化,但尚未确定记录的确定版本。此版本将在以最终形式发布之前进行其他复制,排版和审查,但是我们正在提供此版本以赋予本文的早期可见性。请注意,在生产过程中,可能会发现可能影响内容的错误,以及适用于期刊的所有法律免责声明。
农杆菌介导的菜籽(甘蓝纳普斯)通过下胚轴段转化是过去30年来常用的一种方法。虽然基于下胚基的方法是良好的,但它不容易适应精英种质,并且延长过程对于生产转化设置并不理想。我们开发了一种基于上皮基和较高的茎(损伤)段的农杆菌介导的转化方法,该方法有效,快速且可用于高通量转化和基因组编辑。该方法已在多种低芥酸菜籽基因型中成功实现。该方法似乎是与基因型无关的,具有不同的转化效率。节日段转换用于产生转基因事件以及CRISPR-CAS9介导的移码基因敲除。
摘要:设计无线传感器网络的主要重点在于优化能源效率,尤其是通过实施路由和聚类技术。本研究旨在提出群集路由协议,这些方案有效地保存无线传感器网络中的能量。一开始,我们采用了Honey Badger算法来选择簇头。使用此技术,我们可以考虑到剩余能量和节点接近度之类的东西,从所有传感器中选择最有效的簇头。使用非洲水牛优化技术完成了基站和集群头之间的通信路由。参数(例如残留能量和节点度)用于确定从源到目的地的最短路径。可以通过一系列模拟来确认所提出的模型的有效性,这是实验验证过程的一部分。将建议的MACR协议与低能量自适应聚类层次结构(LEACH),混合能源有效分布式分布(HEED),基于模糊的增强学习数据收集(FRLDG)以及基于模糊规则的能源有效的群集和免疫吸引人的聚类(FEEC-IIR)(FEEC-IIR),以及延迟的延迟及其延迟,以及延迟的延迟,以及延迟的延迟。建议的协议执行。和能源消耗。