抽象的心肌炎是一种严重的心血管疾病,如果不及时治疗,可能会导致严重的后果。它是由病毒感染触发的,并出现诸如胸痛和心脏功能障碍之类的症状。早期检测对于成功的治疗至关重要,心脏磁共振成像(CMR)是识别这种情况的宝贵工具。但是,由于对比度较低,噪声可变以及每名患者的多个高CMR切片的存在,使用CMR图像检测心肌炎可能具有挑战性。为了克服这些挑战,该方法融合了先进的技术,例如卷积神经网络(CNN),改进的差异进化(DE)算法(DE)算法以及用于培训的基于增强学习(RL)模型。开发这种方法由于来自德黑兰OMID医院的Z- Alizadeh Sani心肌炎的分类不平衡,提出了重大挑战。为了解决这个问题,培训过程被构建为一个顺序决策过程,在该过程中,代理会获得更高的奖励/罚款,以正确/错误地对Mi-Nority/多数派类进行分类。此外,作者提出了一种增强的DE算法来启动反向传播(BP)过程,从而克服了基于梯度的方法的初始化灵敏度问题,例如训练阶段的后退传播。通过基于标准性能指标的实验结果证明了拟议模型诊断心肌炎的有效性。总的来说,这种方法显示出加快CMR图像的分类,以自动筛查,促进早期检测和成功治疗心肌炎。
grasp65是一种由高尔基体相关的外围蛋白,该蛋白由Gorasp1基因编码,并且在体外堆叠了高尔基体蓄水系统所需。也已经提出了Grasp65在细胞分裂调节中的关键作用。然而,小鼠中Grasp65的耗竭对高尔基体结构的影响很小,迄今为止,该基因尚未与任何人类表型相关。在这里,我们报告了GORASP1(C.1170_1171DEL; P.ASP390GLUFS*18)的第一个人类致病变异的识别,该患者将神经发育障碍与神经增强性,Neuromuscu-神经肌肉,神经肌肉和骨骼异常相结合。功能分析表明,这种变体导致完全缺乏GRASP65。高尔基体的结构没有显示出碎片化,但是检测到诸如低溶性等异常的糖基异常。有丝分析分析表明,与极性染色体的突起酶和中期过量过多,表明细胞周期会延迟。在RPE细胞中概括了这些表型,其中CRISPR/CAS9引入了类似的突变。这些结果表明,人类中的grasp65丢失引起与糖基化和有丝分裂进程中缺陷相关的新型高尔基体病。
图3:这无疑是本文中最重要的信息之一。i认识到糖基化总体上受到影响,但在这个水平上,通过质谱来深入分析患者细胞的N-糖基化状态至关重要,以了解这种缺陷,戈尔吉帕蒂和糖基化之间的联系。作者使用WGA确认其糖基化缺陷。我会建议他们重复SNA和MAA的实验,这些实验是更具体的凝集蛋白。作者检测到apociii糖基化缺陷,而在转铁蛋白中无。在O-Glycans上发生的溶苷位在Alpha 2,3中,而对于N-Glycans,这主要是Alpha 2,6。缺陷可能只会影响α2,3溶性。使用两个凝集素SNA和MAA的使用应回答这个问题,但这就是为什么通过质谱法中患者细胞的N-糖基化状态很重要。这也可以在本文第二部分中使用的RPE突变细胞中完成。
KRAS是各种癌症中著名的致癌驱动力和最常见的突变基因。KRAS循环加载了GDP加载的“ OFF”和加载GTP的“在”状态下,诱导下游信号转导,以促进细胞增殖和存活1-2)。“ ON”和“ OFF”状态之间的互连是由SOS(Sos(Sos of Leless的儿子)(Kras的二元分子开关)调节。SOS家族作为鸟嘌呤核苷酸交换因子(GEF)由SOS1和SOS2组成,但SOS1是KRAS途径负反馈调节的节点,而SOS2不是3)。由于SOS1是KRAS的直接上游,因此SOS1抑制剂有可能成为影响各种具有不同KRAS突变的癌症的泛Kras抑制剂。在此,我们探索了新型SOS1抑制剂HM99462,与KRAS G12CI或MAPK途径抑制剂结合使用,导致KRAS驱动的癌症的抗肿瘤活性显着增加。
关于诺如病毒的人类诺如病毒具有高度传染性,不断发展,在环境中极为稳定,并且与使人衰弱的疾病有关。症状包括呕吐和腹泻,有或没有恶心和腹部抽筋。诺如病毒感染可能会更严重,并且在包括婴儿,儿童和免疫缺陷患者在内的特定风险群体中可能会更加严重和延长。在美国仅在美国,诺夫病毒每年造成约2100万例急性胃肠炎病例,其中包括109,000例住院,465,000例急诊室就诊和近900例死亡。美国国立卫生研究院(NIH)估计美国对美国的年负担为106亿美元。爆发最常发生在半封闭的社区中,例如疗养院,医院,游轮,学校,救灾地点和军事环境。
在体外:RHE与ART26.12(1、3或10μM),JAK抑制剂I(10μM)或无药物(刺激对照组)一起孵育24小时。将细胞因子混合物(IL-17 + IL-22 + TNF-α下的3 ng/ml添加)添加48小时。并行运行一个未刺激的控件。通过mRNA测量了62个牛皮癣相关基因的表达水平,并与两个家具基因进行了分析。体内:ART26.12(25或100 mg/kg BID),BMS -986165(TYK2抑制剂; 10 mg/kg QD)或媒介物(BID)是口服(PO),每天从一天开始服用(PO)。在剂量后第1小时的第1-7天,IMQ奶油(62.5 mg)或凡士林局部应用于小鼠背部的剃光皮肤。从第1-7天开始,牛皮癣区域和严重程度指数(PASI)用于评估皮肤炎症。在第8天采集末期皮肤和血液样本进行'Omics分析。
线粒体的获取对于启动真核生成至关重要,因此是真核细胞的特征。1,2寄生虫锥虫Brucei包含一个具有独特的线粒体基因组的奇异线粒体,称为动力体DNA(kDNA)。3在核DNA复制开始之前,在细胞周期的G 1期间复制了kDNA cur。4尽管已经在功能上表征了许多蛋白质,并将其鉴定为kDNA补充和分裂的重要组成部分,但管理这种高度精确过程的分子机制仍然很少知道。5,6一种与形态相关的和形态学特征的结构仍然是最神秘的,是“ nabelschnur”,是一种未构成的,纤维状的,使其成熟的结构观察到的,这是通过电子显微镜看到的隔离子女kDna网络。7–9迄今为止,只有一种蛋白质TBLAP1,一种M17家族亮氨肽酶金属蛋白酶,已知可以定位于Nabelschnur。9筛选Brucei Mitotag项目中的蛋白质时,10我们鉴定了一种先前未表征的蛋白质,并具有位于kDNA的mneongreen信号,并形成了分裂KDNA之间的连接点。在这里,我们证明了该KDNA相关的蛋白质,称为TBNAB70,确实位于Nabelschnur,并在新复制的KDNA的分离中起着至关重要的作用,并在Brucei T. Brucei中的随后的细胞因子。
grasp65是一种由高尔基体相关的外围蛋白,该蛋白由Gorasp1基因编码,并且在体外堆叠了高尔基体蓄水系统所需。也已经提出了Grasp65在细胞分裂调节中的关键作用。然而,小鼠中Grasp65的耗竭对高尔基体结构的影响很小,迄今为止,该基因尚未与任何人类表型相关。在这里,我们报告了GORASP1(C.1170_1171DEL; P.ASP390GLUFS*18)的第一个人类致病变异的识别,该患者将神经发育障碍与神经增强性,Neuromuscu-神经肌肉,神经肌肉和骨骼异常相结合。功能分析表明,这种变体导致完全缺乏GRASP65。高尔基体的结构没有显示出碎片化,但是检测到诸如低溶性等异常的糖基异常。有丝分析分析表明,与极性染色体的突起酶和中期过量过多,表明细胞周期会延迟。在RPE细胞中概括了这些表型,其中CRISPR/CAS9引入了类似的突变。这些结果表明,人类中的grasp65丢失引起与糖基化和有丝分裂进程中缺陷相关的新型高尔基体病。
参考:1。RR Griffiths,Johnson MW,MA和AL。 j Psychophonmacol。 2016; 30:1181-1 2。 Rose L,Nutt DJ,Harris RL。 Pharmacol Front。 2018; 8:974。 3。 Ross S,Bossis A,Guss J和Al。 j Psychophonmacol。 2016; 30:1165-1 4。 Goodwin GM,Aaronson St,Old Oil和Al。 n Engel J Med。 2022; 387-1637-1648。 5。 TM,Johnson,Hurwitz E,RR Griffiths。 Psychosharmagolog(Berl)。 2018; 235(2):521-534。 6。 Bl Baum,Co JY,Cox S和Al。 Wkly Rep Morb。 2020; 69(19):575-581。 7。 KL Wisner,Sit DKY,McShea MC和Al。 精神病学。 2013; 70:490-498。 8。VonRotz R,Em和Al。 ecmurtemedicine。 2022; 56:1809。 9。 Bryson N,库存;实地考察Psychecks,Inc,受让人。 锥虫前药。 美国专利11.292,765 B2。 2022年4月5日。 10。 fs Bart,Johnson MW,RR Griffiths。 j Psychophonmacol。 2015; 29(11):1182-1RR Griffiths,Johnson MW,MA和AL。j Psychophonmacol。2016; 30:1181-1 2。 Rose L,Nutt DJ,Harris RL。 Pharmacol Front。 2018; 8:974。 3。 Ross S,Bossis A,Guss J和Al。 j Psychophonmacol。 2016; 30:1165-1 4。 Goodwin GM,Aaronson St,Old Oil和Al。 n Engel J Med。 2022; 387-1637-1648。 5。 TM,Johnson,Hurwitz E,RR Griffiths。 Psychosharmagolog(Berl)。 2018; 235(2):521-534。 6。 Bl Baum,Co JY,Cox S和Al。 Wkly Rep Morb。 2020; 69(19):575-581。 7。 KL Wisner,Sit DKY,McShea MC和Al。 精神病学。 2013; 70:490-498。 8。VonRotz R,Em和Al。 ecmurtemedicine。 2022; 56:1809。 9。 Bryson N,库存;实地考察Psychecks,Inc,受让人。 锥虫前药。 美国专利11.292,765 B2。 2022年4月5日。 10。 fs Bart,Johnson MW,RR Griffiths。 j Psychophonmacol。 2015; 29(11):1182-12016; 30:1181-12。Rose L,Nutt DJ,Harris RL。 Pharmacol Front。 2018; 8:974。 3。 Ross S,Bossis A,Guss J和Al。 j Psychophonmacol。 2016; 30:1165-1 4。 Goodwin GM,Aaronson St,Old Oil和Al。 n Engel J Med。 2022; 387-1637-1648。 5。 TM,Johnson,Hurwitz E,RR Griffiths。 Psychosharmagolog(Berl)。 2018; 235(2):521-534。 6。 Bl Baum,Co JY,Cox S和Al。 Wkly Rep Morb。 2020; 69(19):575-581。 7。 KL Wisner,Sit DKY,McShea MC和Al。 精神病学。 2013; 70:490-498。 8。VonRotz R,Em和Al。 ecmurtemedicine。 2022; 56:1809。 9。 Bryson N,库存;实地考察Psychecks,Inc,受让人。 锥虫前药。 美国专利11.292,765 B2。 2022年4月5日。 10。 fs Bart,Johnson MW,RR Griffiths。 j Psychophonmacol。 2015; 29(11):1182-1Rose L,Nutt DJ,Harris RL。Pharmacol Front。2018; 8:974。 3。 Ross S,Bossis A,Guss J和Al。 j Psychophonmacol。 2016; 30:1165-1 4。 Goodwin GM,Aaronson St,Old Oil和Al。 n Engel J Med。 2022; 387-1637-1648。 5。 TM,Johnson,Hurwitz E,RR Griffiths。 Psychosharmagolog(Berl)。 2018; 235(2):521-534。 6。 Bl Baum,Co JY,Cox S和Al。 Wkly Rep Morb。 2020; 69(19):575-581。 7。 KL Wisner,Sit DKY,McShea MC和Al。 精神病学。 2013; 70:490-498。 8。VonRotz R,Em和Al。 ecmurtemedicine。 2022; 56:1809。 9。 Bryson N,库存;实地考察Psychecks,Inc,受让人。 锥虫前药。 美国专利11.292,765 B2。 2022年4月5日。 10。 fs Bart,Johnson MW,RR Griffiths。 j Psychophonmacol。 2015; 29(11):1182-12018; 8:974。3。Ross S,Bossis A,Guss J和Al。 j Psychophonmacol。 2016; 30:1165-1 4。 Goodwin GM,Aaronson St,Old Oil和Al。 n Engel J Med。 2022; 387-1637-1648。 5。 TM,Johnson,Hurwitz E,RR Griffiths。 Psychosharmagolog(Berl)。 2018; 235(2):521-534。 6。 Bl Baum,Co JY,Cox S和Al。 Wkly Rep Morb。 2020; 69(19):575-581。 7。 KL Wisner,Sit DKY,McShea MC和Al。 精神病学。 2013; 70:490-498。 8。VonRotz R,Em和Al。 ecmurtemedicine。 2022; 56:1809。 9。 Bryson N,库存;实地考察Psychecks,Inc,受让人。 锥虫前药。 美国专利11.292,765 B2。 2022年4月5日。 10。 fs Bart,Johnson MW,RR Griffiths。 j Psychophonmacol。 2015; 29(11):1182-1Ross S,Bossis A,Guss J和Al。j Psychophonmacol。2016; 30:1165-1 4。 Goodwin GM,Aaronson St,Old Oil和Al。 n Engel J Med。 2022; 387-1637-1648。 5。 TM,Johnson,Hurwitz E,RR Griffiths。 Psychosharmagolog(Berl)。 2018; 235(2):521-534。 6。 Bl Baum,Co JY,Cox S和Al。 Wkly Rep Morb。 2020; 69(19):575-581。 7。 KL Wisner,Sit DKY,McShea MC和Al。 精神病学。 2013; 70:490-498。 8。VonRotz R,Em和Al。 ecmurtemedicine。 2022; 56:1809。 9。 Bryson N,库存;实地考察Psychecks,Inc,受让人。 锥虫前药。 美国专利11.292,765 B2。 2022年4月5日。 10。 fs Bart,Johnson MW,RR Griffiths。 j Psychophonmacol。 2015; 29(11):1182-12016; 30:1165-14。Goodwin GM,Aaronson St,Old Oil和Al。n Engel J Med。2022; 387-1637-1648。5。TM,Johnson,Hurwitz E,RR Griffiths。 Psychosharmagolog(Berl)。 2018; 235(2):521-534。 6。 Bl Baum,Co JY,Cox S和Al。 Wkly Rep Morb。 2020; 69(19):575-581。 7。 KL Wisner,Sit DKY,McShea MC和Al。 精神病学。 2013; 70:490-498。 8。VonRotz R,Em和Al。 ecmurtemedicine。 2022; 56:1809。 9。 Bryson N,库存;实地考察Psychecks,Inc,受让人。 锥虫前药。 美国专利11.292,765 B2。 2022年4月5日。 10。 fs Bart,Johnson MW,RR Griffiths。 j Psychophonmacol。 2015; 29(11):1182-1TM,Johnson,Hurwitz E,RR Griffiths。Psychosharmagolog(Berl)。2018; 235(2):521-534。 6。 Bl Baum,Co JY,Cox S和Al。 Wkly Rep Morb。 2020; 69(19):575-581。 7。 KL Wisner,Sit DKY,McShea MC和Al。 精神病学。 2013; 70:490-498。 8。VonRotz R,Em和Al。 ecmurtemedicine。 2022; 56:1809。 9。 Bryson N,库存;实地考察Psychecks,Inc,受让人。 锥虫前药。 美国专利11.292,765 B2。 2022年4月5日。 10。 fs Bart,Johnson MW,RR Griffiths。 j Psychophonmacol。 2015; 29(11):1182-12018; 235(2):521-534。6。Bl Baum,Co JY,Cox S和Al。Wkly Rep Morb。 2020; 69(19):575-581。7。KL Wisner,Sit DKY,McShea MC和Al。 精神病学。 2013; 70:490-498。 8。VonRotz R,Em和Al。 ecmurtemedicine。 2022; 56:1809。 9。 Bryson N,库存;实地考察Psychecks,Inc,受让人。 锥虫前药。 美国专利11.292,765 B2。 2022年4月5日。 10。 fs Bart,Johnson MW,RR Griffiths。 j Psychophonmacol。 2015; 29(11):1182-1KL Wisner,Sit DKY,McShea MC和Al。精神病学。2013; 70:490-498。 8。VonRotz R,Em和Al。 ecmurtemedicine。 2022; 56:1809。 9。 Bryson N,库存;实地考察Psychecks,Inc,受让人。 锥虫前药。 美国专利11.292,765 B2。 2022年4月5日。 10。 fs Bart,Johnson MW,RR Griffiths。 j Psychophonmacol。 2015; 29(11):1182-12013; 70:490-498。8。VonRotz R,Em和Al。ecmurtemedicine。2022; 56:1809。9。Bryson N,库存;实地考察Psychecks,Inc,受让人。锥虫前药。美国专利11.292,765 B2。 2022年4月5日。 10。 fs Bart,Johnson MW,RR Griffiths。 j Psychophonmacol。 2015; 29(11):1182-1美国专利11.292,765 B2。2022年4月5日。10。fs Bart,Johnson MW,RR Griffiths。j Psychophonmacol。2015; 29(11):1182-1
摘要:城市化和气候变化对雨水管理构成了关键的挑战,尤其是在迅速发展的城市中。这些城市经历了越来越不透水的表面和更激烈的降雨事件。这项研究调查了巴基斯坦拉合尔现有排水系统的有效性,这是受到快速城市化和气候变化影响的大型挑战。解决缺乏预定义的风暴模式和有限的历史降雨记录,我们采用了公认但适应能力的方法。此方法利用Log-Pearson III型(LPT-III)分布和交替的块方法(ABM)在各个返回期间创建设计射击图。本研究将雨水管理模型(SWMM)应用于2.71公里2的代表社区,以评估其排水系统的容量。此外,将地理信息系统(GISS)用于洪水风险映射的空间分析,以识别容易发生区域。结果表明,为期2年的回报期设计的当前排水系统不足。例如,一场2年的风暴产生的总洪水量为070万加仑,淹没了研究区域约60%。这项研究确定了洪水风险区,并强调了系统在处理未来,更激烈的降雨事件中的局限性。这项研究强调了迫切需要改进基础设施,以处理增加径流量的增加,例如低影响力开发实践的整合。这些基于自然的解决方案可以增强渗透,减少径流并改善水质,从而提供可持续的方法来减轻洪水风险。重要的是,这项研究表明,整合LPT-III和ABM为洪水风险评估提供了强大而适应性的方法。这种方法在数据稀缺和多样化的降雨模式可能阻碍传统风暴建模技术的发展中国家中特别有效。我们的发现表明,当前的排水系统不堪重负,一场2年的风暴超过了其容量,导致洪水泛滥,影响了该地区一半以上。LPT-III和ABM的应用,通过为数据划分区域创建更现实的设计射击图,从而改善了洪水风险评估,从而更准确地识别了容易洪水的区域。
