电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器的扩展温度范围、振动不敏感性和 EMI 兼容性、方向流量控制阀的数字机载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可以在恶劣环境中使用,安装在执行器本身上。这种布置改善了整个系统的响应时间和闭环控制性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和
电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器的扩展温度范围、振动不敏感性和 EMI 兼容性、方向流量控制阀的数字机载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可以在恶劣环境中使用,安装在执行器本身上。这种布置改善了整个系统的响应时间和闭环控制性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和
电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统来解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器具有扩展的温度范围、抗振动性和 EMI 兼容性,方向流量控制阀的数字板载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可在恶劣环境中使用,安装在执行器本身上。这种布置改善了闭环控制中的整体系统响应时间和性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和
摘要 — 我们介绍了 AAM-Gym,这是一种用于先进空中机动 (AAM) 的研发测试平台。AAM 有可能通过利用新型飞机(例如电动垂直起降 (eVTOL) 飞机)和新的先进人工智能 (AI) 算法来减少地面交通和排放,从而彻底改变旅行方式。验证 AI 算法需要有代表性的 AAM 场景,以及快速模拟测试平台来评估其性能。到目前为止,还没有这样的测试平台可用于 AAM,以便为政府、行业或学术界的个人提供一个通用的研究平台。麻省理工学院林肯实验室开发了 AAM-Gym 来解决这一差距,它提供了一个生态系统来开发、训练和验证各种 AAM 用例中的新 AI 算法和已建立的 AI 算法。在本文中,我们使用 AAM-Gym 研究两种强化学习算法在 AAM 用例(AAM 走廊中的分离保证)上的性能。基于 AAM-Gym 提供的一系列指标展示了这两种算法的性能,展示了测试平台对 AAM 研究的实用性。
未来的飞机尺寸工具(FAST)是密歇根大学为早期概念飞机设计开发的基于MATLAB的开源软件。快速通过新颖的推进系统来促进传统和高级飞机配置的设计和分析,从而基于特定要求,所需的技术目标以及系统级别的目标来实现初步尺寸和性能评估。它已被用于NASA的电气化飞机推进和电气化动力总成飞行演示项目,以评估新型飞机概念,包括电气化商用货轮(notionility lockheed Martin LM-100J)和NASA的亚音速单单船尾发动机配置。本文介绍了快速的可视化软件包的开发,从而满足了整个尺寸过程中飞机设计的视觉表示的需求。集成的软件包提供了飞机外模线和推进架构的示意图的可视化。用户可以创建自定义的飞机几何形状或使用快速可用的预设。此外,随着飞机尺寸的过程的进行,可视化软件包会动态更新飞机的形状和尺寸,从而通过使设计师能够在早期设计阶段有效地可视化和完善其飞机概念来快速增强飞机。
AFLoNext 是一个为期四年的项目,由欧盟委员会在第七框架计划下资助。该项目的主要目标是验证和完善用于新型飞机配置的极具前景的流动控制和降噪技术,以在提高飞机性能和减少环境足迹方面迈出一大步。该项目联盟由来自 15 个国家的 40 个欧洲合作伙伴组成。构成 AFLoNext 科学概念的六条技术流之一涉及减轻和控制起飞和降落期间起落架区域的振动。起落架附近的结构部件,例如起落架壳壁、支柱或起落架门,通常会承受显著的动态载荷。这些载荷源于波动的气动压力和由此产生的结构振动。机身下方高度波动且复杂的气动流动行为会导致结构部件上的非稳定压力。本文介绍了用于预测此类动态载荷的 CFD 方法,并介绍了使用混合 RANS-LES 模型和格子波尔兹曼方法计算的一些初步结果。与飞行测试数据的比较验证了这些 CFD 模拟的真实性。
I. 简介 飞行测试是任何新型飞机开发过程的核心部分。作为测试的一部分,记录飞机在各种机动过程中的响应,从中可以确定描述其特性的飞机稳定性系数。然后可以使用这些估计值来验证或更新现有的数值模型。但是,测量到的响应有噪声、有偏差,并且可能以不同的速率采样,这可能导致模型不准确。因此,在估算这些稳定性系数之前,飞行路径重建 (FPR) [ 1 , 2 ] 通常是过滤和检查收集的飞行测试数据的一致性的第一步。FPR 是一种过滤技术,通过将飞机运动方程与响应测量相结合来重建飞机状态的时间历史。在这些方程中,飞机被表示为在空中移动的点质量。然而,为了提高燃油效率,飞机结构变得更轻,从而也更灵活。这反过来导致飞机的结构动力学与飞机飞行动态响应具有更大的相互作用。因此,为了正确地模拟这种相互作用,还需要重建结构的动力学和刚体状态。除了气动弹性建模外,跟踪飞机结构变形对于结构等应用也很重要
摘要:ICAO 附件 16 规定用于认证亚音速运输飞机的声学性能。每架飞机都根据在进场和离场沿线特定认证位置测量到的 EPNL 水平进行分类。通过模拟此认证过程,可以确定所有相关参数并评估有希望降低噪音认证水平的措施,以符合基本 ICAO 规定,即飞机的允许运行条件。此外,模拟是评估新技术和不存在的飞行器概念的唯一方法,这也是本文所述研究活动的主要动机。因此,ICAO 附件 16 规定被整合到 DLR 现有的噪音模拟框架中,并在概念设计阶段实现新型飞机概念的虚拟噪音认证。预测的认证水平可以直接选择为设计目标,以便为新飞机设计实现有利的 ICAO 噪音类别,即同时考虑设计和由此产生的飞行性能。可以对所考虑的每种概念飞机设计的操作限制和允许的飞行程序进行详细评估和识别。可以对影响预测噪声认证水平的相关输入参数进行敏感性研究。具有主导作用的特定噪声源
摘要:为了减少航空对环境的影响,飞机制造商开发了新型飞机配置并研究了先进的系统技术。这些新技术非常复杂,其特点是采用电力或混合电力推进系统。确保这些复杂架构的安全对于新飞机概念的认证和投入使用至关重要。系统架构中的新兴技术(例如使用基于模型的系统工程 (MBSE))有助于处理这种复杂性。但是,MBSE 技术目前尚未与使用自动化多学科设计分析和优化 (MDAO) 技术的总体飞机概念设计集成。当前的 MDAO 框架未包含系统安全评估的各个方面。业界对基于模型的安全评估 (MBSA) 越来越感兴趣,以改进安全评估过程并让安全工程师详细了解系统组件的故障特征。本文提出了一个全面的框架来介绍概念设计和 MDAO 中安全评估的各个方面,同时还考虑了系统架构和安全评估过程的下游兼容性。所提出的方法包括 SAE ARP4761 安全评估流程的特定元素,并使其适应概念设计中的系统架构流程。所提出的框架还引入了一种新颖的安全基础
谢谢主席 Larsen、排名成员 Graves、主席 DeFazio、排名成员 Graves 和委员会的其他成员。今天,我很荣幸能出席航空小组委员会。我们之所以来到这里,是因为在狮航 610 和埃塞俄比亚航空 302 航班五个月内发生的悲惨坠机事件,这两起致命事故都是新型飞机,没有幸存者,这在现代航空史上是前所未有的。与大多数美国人和世界各地的许多人一样,我对这两起可怕的悲剧和可怕的生命损失感到震惊和悲伤。现在,我们有义务找出这些悲惨坠机事件发生的原因,并防止它们再次发生。这些坠机事件充分证明,我们目前的飞机设计和认证系统已经失败。我们尚未完全了解它是如何让我们失望的。多项调查正在进行中。我们有责任让每一位乘客知道故障发生的位置和方式,以及必须做出哪些改变以防止将来再次发生。显然,我们犯下了严重的错误,造成了严重的后果,夺走了 346 人的生命。这些坠机事故的调查要几个月后才能完成,但有些事情已经很清楚了。