工业 4.0 一词预示着工业生产的新纪元 (Kagermann 等人,2013)。生产工厂应更灵活,以更快地响应市场需求,更加用户友好,更可预测 (Kagermann 等人,2013),例如通过状态监测。预计在转换成本方面,额外生产率的潜力在 10% 到 35% 之间 (R¨ußmann 等人,2015),而其他研究发现节省甚至高达 70% (Bauernhansl 等人,2016)。这一潜力部分依赖于人工智能 (AI) (Wahlster,2017)。由于工业 4.0 一词已为人所知约 10 年 (Wahlster,2017),我们想回顾一下 AI 一词在工业环境中的使用情况。人们是否确切知道在制造业中什么是人工智能?人工智能在制造业中的实施和成功程度如何?使用人工智能的具体好处是什么?如果“巨大潜力”的说法不仅仅适用于营销目的,那么人工智能在企业中广为人知也是可以预料的。本文的结构如下:首先,我们总结了在生产领域公司进行的关于人工智能的访谈中得出的主要结论,重点关注中小企业(SME)。其次,我们列出了支持公司使用人工智能的需求和潜在策略。之后,介绍了两种最佳实践解决方案。最后,我们得出结论并展望了未来。
这款手表以同样激进的价格彻底改变了计时方式。在钟表历史上,很少有比世界首款 Piezo 手表的诞生更重要的时刻。这款手表于 1969 年首次向公众发布,彻底改变了整个行业,开创了计时新纪元。我们用 Timemaster 手表来纪念这一传统,这款手表只能通过 Stauer 购买,价格也只有我们能提供。在 Piezo 手表问世之前,重力驱动的瑞士手表是精确计时的标准承载者。但当第一款商用 Piezo 手表进入市场时,一切都改变了。这是一些世界顶级工程师经过十年研发的成果,他们发现,当你挤压某种类型的晶体时,它会产生微小的电流。而且,如果你让电流通过晶体,它会以精确的频率振动——每秒恰好 32,768 次。当 Piezo 手表上市时,它是市场上最可靠的时计,精确到每天 0.2 秒。如今,它仍然被认为是电气工程领域的一项重大进步。“它就像一颗大子弹射向了机械手表行业最敏感的地方……瑞士人惊慌失措。”—— A Blog to Watch 的 Ariel Adams。通过 Timemaster,我们将世界上最重要的机械进步之一置于一个明显阳刚的表壳中。一个英俊的神童,采用华丽的皮革和镀金不锈钢制成。
摘要:通过包括基础研究和临床研究在内的新方法,实体癌的治疗取得了进展。抗癌疗法的最新创新,包括免疫检查点抑制剂生物制剂、治疗性疫苗、小分子药物和 CAR-T 细胞注射,标志着癌症研究的新纪元,该研究已经以更快的(表观)基因组学、转录组学和蛋白质组学而闻名。随着人们长期追求的癌症治疗个性化成为现实,评估所有当前治疗可能性并为每位患者选择最佳治疗方案的需求至关重要。这是医疗保健的一项新任务,值得在未来的治疗考虑中得到重视。这是因为癌症是一种复杂的遗传疾病。转移性癌症是一种致命形式,其包括改变的基因(及其调节因子),这些基因编码了癌症独立生长的十个特征,包括逃避细胞凋亡、永生化、多药耐药性、新血管形成、侵袭性、基因组不稳定、炎症、代谢失调和避免免疫系统破坏。这些因素是许多抗癌药物和治疗方法的已知靶点,调节这些因素是治疗目标,希望使实体癌成为一种慢性疾病而不是致命疾病。本文回顾了当前针对癌症的治疗手段,重点是免疫疗法。
摘要 联合国 2030 年可持续发展议程以 17 项可持续发展目标为基础,包含 169 个具体目标和指标。空间科学、技术及其应用可以提供广泛的解决方案,帮助实现可持续发展目标,从而有助于实现经济、社会和环境可持续发展。本文从政策、战略和技术三个不同角度探讨了空间活动的贡献。它侧重于与可持续发展目标相关的一组挑战,即全球健康、水、能源和城市发展。拟议的战略视角考虑了跨学科、衍生和衍生转移、开放式创新过程和整体可持续性等因素。太空探索计划通常围绕太空任务要求和技术构思,其成熟度可使其纳入计划的技术路线图。因此,本文讨论了此类路线图如何更好地整合与地球可持续性相关的政策和战略方面。如果一个系统设计得有效,可以在太空中运行,同时又能实现地球的可持续发展,那会怎样?关键使能技术(大数据、人工智能系统、先进机器人)的进一步融合,开启了探索其他星球的新纪元,在这些星球上,自主性是基本要求。同时,这些发展可以成为地球未来发展不可或缺的一部分,为未来公民提供智能解决方案,并开辟与这些衍生产品相关的新业务领域。例如,增材制造技术的开发将简化机械零件的生产及其物流链。然而,它也将在更大范围内开辟新的思维方式,例如使用当地材料(如月球风化层或地球沙子)建造建筑物和结构。其他例子包括
免疫检查点抑制剂 (ICI) 开启了免疫疗法的新纪元,代表了癌症治疗的关键突破。它们的影响深远,ICI 是当今最常用的抗癌疗法之一。值得注意的是,它们即使在停止治疗后也能诱导长期缓解,为实现持久治愈带来了真正的希望。然而,尽管取得了这些进展,肿瘤学领域仍然存在挑战,包括耐药现象、免疫相关不良事件和不理想的反应率。为了应对这些挑战,联合疗法作为一种有前途的方法应运而生,有望改善治疗效果并解决单一药物 ICI 疗法固有的局限性。通过协同靶向多种途径,联合疗法有可能增强治疗效果,同时减轻毒性并阻止耐药机制的出现。了解耐药性发展和不良事件背后的复杂性对于设计新颖而精致的组合策略至关重要。图 1 显示了 FDA 批准 ICI 组合的时间表。本综述旨在提供全面、最新的各种联合治疗策略示例,这些策略可用于克服 ICI 治疗的各种挑战。通过探索创新的治疗组合,我们旨在为临床医生和研究人员提供可操作的知识,以优化患者治疗结果并推动免疫肿瘤学领域的发展。
广义相对论的伟大预言之一是引力波的存在。对双黑洞合并产生的引力波的观测[1]开创了天文学和宇宙学的新纪元。讨论引力波时,一个基本问题是它们的能量。20 世纪 50 年代,人们曾对引力波是否携带能量存在争议。最终,Bondi 通过一个简单的思想实验解决了这一争议[2]。直到 Isaacson 等人的研究,人们才对引力波的能量进行了数学描述,在 Isaacson 的研究中,通过用短波近似对几个波长的波场梯度平方取平均值,得到了引力波的有效能量动量张量[3,4]。在极早期宇宙物理学应用中,感兴趣的涨落波长大于哈勃半径,Mukhanov、Abramo 和 Brandenberger 导出了有效能量动量张量 [5,6]。在这些被称为几何方法的方法中,引力场被分为背景部分和波部分,有效能量动量张量来自波对背景的反作用。另一种方法被称为场论方法,其中有效能量动量张量通过拉格朗日-Belinfante-Rosenfeld 程序导出 [7-9]。结果是伪张量的各种表达式 [10-17]。尽管文献中提出了不同的获取引力波能量的方法,但它们都存在一些缺陷。在几何方法中,需要对引力场进行人工划分,而在场论方法中,伪张量取决于坐标。此外,这两种方法都需要一个额外的复杂平均方案,才能获得有意义的引力场有效能量动量张量。对这些人工对象的依赖会导致一些模糊性。因此,不同的方法
人工智能 (AI) 的新纪元可以追溯到 1956 年,当时 John McCarthy 博士在美国汉诺威达特茅斯学院的一个夏季研讨会上首次提出了 AI 一词。由于研讨会非常成功,后来美国、日本、德国和英国的几所顶尖大学和计算机行业都投入巨资来理解、开发 AI 的方法和应用。著名的发明有麻省理工学院的 Joseph Weizenbaum 发明的 Eliza,斯坦福大学的 Edward Shortliffe 发明的 MYCIN 等专家系统,密歇根大学的 John Holland 博士发明的遗传算法。然而,对当今全球 AI 发展最值得注意的贡献是日本于 1980 年代启动的“第五代计算机项目”。该项目的成果不仅仅是发明和创新,最重要的是,为全世界提供了数以千计的聪明的 AI 工程师、程序员、技术人员、管理人员和推动者。自那时起,人工智能在几乎所有与制药、银行和金融、农业、食品加工、时尚、犯罪预防、智能家居、交通管制、野生动物保护、军事、灾害管理、医疗保健、机器人、制造业、体育、教育、人力资源、污染控制、政治等相关的基础和应用研究中都发挥了重要作用。为了成为这一方向的推动者和贡献者,浦那麻省理工世界和平大学 (MITWPU) 以在线模式组织了为期五天的教师发展计划 (FDP),题为“人工智能为所有人”。FDP 旨在阐明人工智能的概念、公式、应用等。来自世界各地的人工智能领域的精英和活跃研究人员均受邀参加。
近年来,靶向治疗和免疫治疗已成为非小细胞肺癌(NSCLC)的有效治疗手段。随着诊疗技术的飞速发展和新药的不断研发,NSCLC的精准医疗已进入新纪元。这对于携带常见EGFR基因突变的NSCLC患者来说是一个重大突破,靶向药物的应用显著提高了生存率。然而,有一类罕见的基因突变被称为EGFR外显子20插入(ex20ins)突变,其结构不同于常规的EGFR基因突变,即外显子19缺失突变(19-Del)和外显子21点突变。由于其结构特点不同,携带这些EGFR ex20ins突变的患者对传统的酪氨酸激酶抑制剂(TKI)疗法没有反应,这部分患者不属于其适用范围。然而,激活的 A763_Y764insFQEA 突变引起的反应比紧随其后的 C 螺旋近区和远区的突变更明显,因此应区别对待。目前,缺乏针对 EGFR ex20ins 突变 NSCLC 的有效治疗方法。化疗的疗效相对较好,而由于临床数据不足,免疫疗法的疗效仍不明确。此外,第一代和第二代靶向药物的疗效仍然有限。然而,第三代和新型靶向药物已被证明是有效的。虽然新型 EGFR-TKI 有望治疗 NSCLC 患者的 EGFR ex20ins 突变,但它们面临着许多挑战。本综述主要关注针对 EGFR ex20ins 的 NSCLC 的新兴疗法,并强调正在进行的主要临床试验,同时概述该领域的相关挑战和研究进展。
外面很黑,而且越来越黑。鸟儿栖息,汽车前灯亮着,但这是春天的早晨 09:30……2015 年 3 月 20 日星期五,北欧出现了令人惊叹的日偏食。这深刻地提醒我们太阳系的力量和威严。也许命运注定了,这期《航空测试国际》杂志将独家采访朱莉·克莱默·怀特,她是深太阳系载人猎户座项目的高级工程师。2014 年 12 月 5 日,猎户座飞船搭载德尔塔 IV 重型火箭从卡纳维拉尔角发射升空:这是一次绕地飞行 2 圈、持续 4 小时的飞行,测试了许多对安全至关重要的系统,包括发射和高速再入系统,如航空电子设备、姿态控制、降落伞和隔热罩。未来,猎户座飞船将搭载美国宇航局的新型重型火箭太空发射系统发射。这次试飞标志着太空旅行的新纪元。这表明了迈出这一步的极其重要的决心。“我是在 1985 年挑战者号航天飞机悲剧的阴影下加入 NASA 的,”Kramer 说。“我亲眼目睹了人们致力于解决当天出现的问题并确保不再发生这种事情的决心。从那时起,对 NASA 努力实现的目标(工程卓越和诚信)的热情成为了我所做的一切的试金石。我知道这些人生教训并不是 NASA 独有的。但要具备这些价值观,并注重团队合作和个人
月船三号任务:月船三号对月球南极的探索标志着印度太空事业的新纪元。印度成功在月球南极附近软着陆,这是印度的民族自豪感,使该国成为第一个在如此接近月球南极的地方着陆航天器这一非凡壮举的国家。火星轨道飞行器任务(Mangalyaan):该任务使印度成为第一个登陆火星的亚洲国家,也是继俄罗斯航天局、美国国家航空航天局 (NASA) 和欧洲航天局之后世界上第四个登陆火星的国家。Aditya-L1:这是印度第一个太空天文台级太阳任务,从 150 万公里的相当远的距离研究太阳。运载火箭发展计划:极地卫星运载火箭 (PSLV)、地球同步卫星运载火箭 (GSLV) 和下一代 GSLV Mark-III 运载火箭任务是运载火箭发展计划的一部分。地球观测计划:它包括尖端的印度遥感 (IRS) 卫星,例如 Resourcesat、Cartosat、Oceansat、雷达成像卫星、地理成像卫星和天气/气候卫星,例如 INSAT-3DR 任务。IN-SPACE:它的发射是为了为私营公司使用印度空间基础设施提供公平的竞争环境。新空间印度有限公司 (NSIL):它是印度空间研究组织的商业部门,其主要目的是使印度企业能够参与高科技空间相关业务。印度空间研究组织的未来空间计划: