随着对光和物质波场的量子性质的研究取得最新进展,量子工程这一新领域应运而生。量子工程为量子计量学测试基本物理定律开辟了新视野,在空间和时间测量方面达到了前所未有的精度水平。相关的新型量子技术催生了原子钟和传感器,可在全球大地测量、惯性传感、导航和激光测距中得到广泛应用。德国联邦物理技术研究院 (PTB) 一直致力于开发超越最先进水平的精密测量技术。多年来,PTB 与汉诺威莱布尼茨大学 (LUH) 一直有着出色的合作伙伴,尤其是数学、物理和大地测量学院的研究所,以及马克斯普朗克引力物理研究所 (Albert Einstein Institute, AEI),这些研究所在量子工程和密切相关领域开展着顶级研究。此外,与汉诺威激光中心 (LZH) 和不来梅大学应用空间技术和微重力中心 (ZARM) 的密切合作已被证明是卓有成效的。这个强大的社区是最终导致建立 QUEST(量子工程和时空研究中心)的先决条件,该中心是汉诺威莱布尼茨大学的卓越中心。因此,QUEST 汇集了这些合作伙伴的杰出专业知识,以在汉诺威-布伦瑞克地区共享知识并提高该地区的实力。该集群的核心思想是将量子工程、量子传感器、时空和使能技术这四个主要研究领域联系起来,并建立有前景的研究活动,特别是在这些领域的交界处。因此,PTB、LUH、AEI、LZH 和 ZARM 之间的未来合作将通过各种 QUEST 措施得到系统加强,例如通过在 PTB 校园内建立联合教授职位和研究小组。在本出版物中,读者将获得 QUEST 合作伙伴的概述以及 PTB 正在进行和计划中的 QUEST 相关研究活动。我们希望 PTB 的新 QUEST 研究所能够不负众望,为量子工程和时空研究的科学技术做出领先贡献。我们希望您喜欢阅读本期内容。
我非常高兴和热情地向你们每一位来到我们享有盛誉的学院表示热烈欢迎。作为副校长,我很荣幸能够代表一所以致力于学术卓越、创新和个人成长而闻名的学院。选择一所大学是您教育之旅中的一个重要里程碑,我们了解做出明智决定的重要性。我们的学院是南旁遮普地区的一座知识灯塔,提供培养好奇心、创造力和批判性思维的培育环境。在我们的 NFC IET 木尔坦,我们相信教育的力量可以改变生活和塑造未来。我们敬业的教职员工都是各自领域的知名专家,随时准备激励和指导您走向成功之路。我们提供涵盖不同学科的多样化课程,确保您有机会追求自己的激情并探索新视野。虽然学院主要专注于工程、科学和技术课程,但我们在工商管理、时装设计、建筑和犯罪学等领域也享有盛誉。我们最先进的设施、尖端的研究中心和丰富的图书馆资源为您提供了在学术上取得优异成绩所需的工具。此外,专门建造的校园和基础设施将提供无限的机会来培养您的梦想。此外,我们了解全面教育的重要性,我们充满活力的校园生活提供了无数机会来参与课外活动、俱乐部和学生组织,以满足广泛的兴趣。作为 NFC IET Multan 的学生,您将成为一个充满活力和包容性的社区的一部分,这个社区崇尚多元化,鼓励合作。我们致力于营造一个可以自由交流思想、重视观点并建立终身友谊的环境。除了课堂之外,我们鼓励您利用我们强大的行业合作伙伴网络、实习和职业发展计划。我们的目标是让您掌握在不断变化的全球环境中茁壮成长所需的知识、技能和经验。我邀请您进一步探索我们的学院,无论是通过虚拟参观、开放日的信息会议,还是与我们当前的学生和校友的对话。我们相信,您会发现为什么 NFC IET Multan 是一个梦想起飞和雄心壮志得以实现的地方。我代表整个 NFC IET Multan 大家庭,衷心欢迎您。我们热切期待有机会指导您的教育之旅并见证您的成长和成就。
摘要 随着信息和通信技术的发展,旅游业发生了翻天覆地的变化。人工智能 (AI) 正在成为日常生活中不可或缺的一部分,并且在很大程度上影响着旅游业。旅游业一直是采用最新技术的领先行业之一。它还获得了支持人工智能的工具,为旅行者提供无缝的旅行体验。旅行聊天机器人、客户服务旅行机器人、语音助手、服务自动化和机器人的使用已经能够满足现代游客的需求。这最终导致旅游服务的个性化、运营的升级和生产力的提高。在 COVID-19 大流行期间,当旅行受到限制并且旅行者遵守社交距离规定时,人工智能 (AI) 已被证明有很大帮助。它在旅游业也有光明的未来。本研究旨在讨论人工智能在改善旅游业方面的各种用途。本文还强调了人工智能在彻底改变旅游业和为游客提供更好的旅行体验方面的影响。关键词:人工智能、聊天机器人、数字化转型、机器人技术、旅游、旅游业、虚拟助手。引言世界技术在不断发展。新的创新不断涌现,现已广泛应用于包括旅游业在内的所有领域,更具体地称为人工智能 (AI)。AI 一词的定义是“机器表现出类似人类的能力,例如推理、学习、计划和创造力。”(欧洲议会,2020 年)旅游业一直是采用最新技术发展的领先领域之一。该行业还意识到了人工智能 (AI) 的潜力,并正在利用它来优化劳动力、彻底改变游客体验和整个旅游业。旅游业依靠数据分析来制定未来战略,并推动其迈向新视野。旅游公司正在使用聊天机器人作为一种经济高效的技术,帮助重塑游客与其企业互动的方式,并且还可以获取游客的重要信息。旅游公司也使用虚拟助手,这是一种支持人工智能的应用程序。它们用于帮助游客进行规划,并确保他们获得无缝和愉快的体验。它们回答游客的疑问,并通过使用机器学习和自然语言处理为他们提供个性化服务。在 COVID-19 大流行期间,人工智能
高级科学计算研究概述 高级科学计算研究 (ASCR) 计划的使命是推进应用数学和计算机科学;与学科科学合作提供最复杂的计算科学应用;推进计算和网络能力;并与包括美国工业界在内的研究界合作,为科学和工程开发未来几代计算硬件和软件工具。ASCR 支持通过计算实现科学发现的最先进的能力。ASCR 与科学办公室 (SC) 以及应用技术办公室、其他机构和行业的合作对于这些努力至关重要。ASCR 的计算机科学和应用数学活动为提高国家高性能计算 (HPC) 生态系统的能力奠定了基础,通过专注于长期研究来开发创新的软件、算法、方法、工具和工作流程,以预测未来的硬件挑战和机遇以及科学应用和能源部 (DOE) 任务需求。同时,ASCR 与其他学科科学合作,在对 SC、DOE 和国家具有战略重要性的领域提供一些最先进的科学计算应用程序。 ASCR 还部署和运营世界一流的开放式 HPC 设施和高性能科学研究网络基础设施,包括这一战略技术前沿所需的独特专业知识。半个多世纪以来,美国通过持续投资于研究、开发和定期部署新的先进计算系统和网络以及有效使用它们的应用数学和软件技术,保持了世界领先的计算能力。美国在计算领域的领先地位带来的好处包括:大大提高了劳动力生产率,加速了科学和工程领域的进步,推进了先进的制造技术和快速成型技术,以及无需测试的库存管理。a 计算科学使研究人员能够探索、理解和利用自然和工程系统,这些系统太大、太复杂、太危险、太小或太短暂,无法通过实验进行探索。HPC 领域的领导地位也在维持美国的竞争力方面发挥了至关重要的作用。人们认识到,在高性能计算和值得信赖的人工智能 (AI) 以及计算和数据生态系统整合方面处于领先地位的国家将在开发创新型清洁能源技术、医药、工业、供应链和军事能力方面引领世界。美国还需要利用对科学的投资来开发创新的新技术、材料和方法,以加强我们的清洁能源经济,并确保所有美国人都能从这些投资中获益。下一代科学突破将来自于在极大规模人工智能中采用数据驱动方法,以及美国研究人员和 SC 用户设施生成的数据量和复杂性的大幅增加。人工智能技术与这些现有投资的融合为创新和技术开发和部署创造了强大的加速器。ASCR 处于关键地位,可以利用百亿亿次级生态系统和数十年的基础研究投资以及行业合作伙伴关系,以国家利益为目标,推动负责任地开发人工智能技术和人工智能支持的科学。量子信息科学 (QIS) ——利用复杂的量子力学现象创造获取和处理信息的全新方式的能力——正在开辟科学发现和技术创新的新视野,这些新视野建立在数十年 SC 投资的基础上。能源部设想未来,QIS 这一交叉领域将越来越多地推动科学前沿和创新,以实现基于量子互联网的量子应用的全部潜力,从计算到传感。然而,我们需要采取大胆的方法,更好地结合技术创新链的所有要素,并联合 SC、大学、国家实验室和私营部门的人才,共同努力,使美国引领世界走向量子未来。微电子科学应用的持续进步,尤其是这些设备在 HPC 和 AI 中的能源利用,是 ASCR 所有努力的基础。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,通过百亿亿次计算项目 (ECP) 中建立的联系,继续与行业、应用技术办公室、其他机构和科学界进行互惠互利的合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。美国能源部设想,未来量子信息系统这一交叉领域将不断推动科学前沿和创新,以实现量子应用的全部潜力,从计算到传感,通过量子互联网连接起来。然而,我们需要采取大胆的方法,更好地结合技术创新链的所有要素,并将 SC、大学、国家实验室和私营部门的人才聚集在一起,共同努力,使美国引领世界走向量子未来。微电子科学应用的持续进步,尤其是这些设备在 HPC 和 AI 中的能源利用,是 ASCR 所有努力的基础。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,通过百亿亿次计算项目 (ECP) 中建立的联系,继续与行业、应用技术办公室、其他机构和科学界进行互惠互利的合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。美国能源部设想,未来量子信息系统这一交叉领域将不断推动科学前沿和创新,以实现量子应用的全部潜力,从计算到传感,通过量子互联网连接起来。然而,我们需要采取大胆的方法,更好地结合技术创新链的所有要素,并将 SC、大学、国家实验室和私营部门的人才聚集在一起,共同努力,使美国引领世界走向量子未来。微电子科学应用的持续进步,尤其是这些设备在 HPC 和 AI 中的能源利用,是 ASCR 所有努力的基础。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,通过百亿亿次计算项目 (ECP) 中建立的联系,继续与行业、应用技术办公室、其他机构和科学界进行互惠互利的合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。
现在人们已经认识到信息从根本上植根于物理学 1,2。物理学最终是量子的,信息也是如此。经典信息理论的一些关键障碍已被其量子对应理论所克服,这为量子计算领域开辟了新视野,这主要是由于纠缠作为一种基本资源的可用性 1,2。信息在博弈论这个数学分支中发挥了核心作用,它提供了分析冲突局势的工具,在冲突局势中,各方(称为参与者)做出相互依赖的决策。因此,每个参与者都会考虑其他参与者可能做出的决策或策略,以制定最佳策略。然而,当冲突局势得到解决时,参与者的最佳策略描述了博弈的解决方案。否则,我们会陷入困境,即博弈中没有最佳解决方案的情况。尽管博弈论最初是在数学背景下发展起来的,试图描述机会游戏和赌博,但它很快就成为微观经济学的基础。第一个发展是所谓的零和游戏,其中玩家完全不相上下,没有合作的理由。后来,这一限制被取消,合作博弈论领域诞生了。经典合作博弈的量子扩展被称为量子博弈 2 – 9 (QG)。游戏的量子扩展最近因其在经济学中作为量子技术和谈判的新环境的可能作用而受到评论 10 – 12。在 Eisert 6、7 的量子博弈方案中,玩家的策略是在二分希尔伯特空间中对初始最大纠缠态执行的特定局部幺正变换。在玩家策略到位后,量子态通过解缠门产生最终状态。随后对该状态进行四个“量子”概率(以下称为概率)测量。游戏的支付关系用相应双矩阵的支付条目和由此产生的概率来表示。量子纠缠的一个特点是,纠缠会干扰经典博弈中的困境 6、7 。从经典角度来看,这种困境在于,没有玩家能够在不降低其他玩家预期收益的情况下获胜。从这个意义上讲,对于量子纠缠,可以说原始博弈的困境可以完全消失,也就是说,博弈的困境被打破了。在量子纠缠中,经典博弈中的一些限制被解除,从而干扰了困境,这为获得一种均衡提供了可能性,即两个玩家都获胜,并且在博弈中可用策略的可能收益范围内获得可接受的收益。将纠缠纳入博弈的初始状态,就会生成玩家最初无法使用的策略 7 。这些策略的数学公式可以探索量子和经典玩家之间的竞争互动 5、13。本文针对囚徒困境 6、7 和性别之战 14 测试了这些策略。同样,这种方法也可以用于其他游戏,例如胆小鬼游戏 7。此外,
本书将是《管理和组织认知新视野》系列的第六卷。前几卷探讨了战略不确定性、创新以及 MOC 研究的方法进步和挑战等主题。2023 年的卷将包括一系列跨学科的贡献,这些贡献反映了使用物理、概念和数字认知辅助工具进行管理认知和战略决策的理论基础。我们采用认知辅助这一术语的最广泛含义,即任何有目的地用作感官输入以影响战略背景下的认知状态或过程的物理或概念制品。这些范围可以从高度结构化的战略模拟或游戏到战略工作中使用的视觉工具,例如概念模型、图纸、图片、框架、粘土和乐高积木,再到使用图像、声音、气味或物理存在来指导和丰富从事战略工作和战略决策的管理者的认知。目标和范围 战略工作不仅基于语言,还基于认知辅助工具,这些工具有助于个人和团队之间、组织内部和组织之间以及与外部受众之间的理解和传递。战略工作中的沟通受到语言使用模糊性、我们的思维方式和个人信念的限制(Keefe,2000 年)。另一个挑战是,组织中的群体很容易发展出特定群体的口头和图形对话,而局外人不容易理解(Fay、Garrod、Lee 和 Oberlander,2003 年)。此外,通过语言进行交流需要对互动限制敏感的轮流发言(Healey 等人,2007 年)。多年来,战略学者和实践者已经设计和研究了大量语言以外的战略工作辅助工具。它们包括物理和数字工具和人工制品,例如框架、模拟、战争游戏、艺术、戏剧、严肃游戏,或粘土、乐高或原型等人工制品,以应对复杂性并阐明想法和思想 (Bačić, & Fadlalla, 2016; Roos, Victor, & Statler, 2004)。其他示例包括使用草图、符号、图片和数字人工制品和工具 (Eppler & Platts, 2010; Pershina et al., 2019; Marion & Fixson, 2020)。动觉任务可以成为策略工作中基于艺术的学习过程的一个很好的起点,因为它们倾向于减少抑制 (Nissley, 2010)。通过参与幻想和游戏,游戏有助于表达积极和消极的情绪(Kolb & Kolb,2010),使创造处于一种与工作场所不同的临界状态(Johnson et al.,2010)。它为团队提供了一个环境来识别和争论有争议或关键的问题(Heracleous & Jacobs,2005)。不同的材料甚至可以与更深层次的人类情感联系起来(Taylor & Statler,2014),可以作为
血液学一词源于希腊语 haimo-,即“血液”和拉丁语 logia,即“研究”。由于血液一直是研究的热门对象,因此几位杰出的人物(也被称为血液学的“父亲”和“母亲”)为该专业的成功做出了重大贡献。在过去 30 年中,血液学家见证了多个领域的奇迹,例如从新鲜血液发展到外周干细胞再到现在的细胞或基因疗法的移植;或慢性粒细胞白血病,这是第一种无需化疗即可治愈的癌症之一 (1)。这一独特的临床实验室专业的大量研究和开发使人们更好地了解了多种疾病和靶向疗法。2023 年,药品评估和研究中心 (CDER) 批准了 55 种新药,生物制品评估和研究中心 (CBER) 也紧随其后。这两个中心都属于联邦药品协会 (FDA)。这些数字反映了小分子和生物药典以及细胞和细胞产品数量的增长。作为治疗领域,血液学继续成为领头羊,在这两个领域都获得了大多数批准。表 1 总结了与血液学有关的选定批准。最著名的是利用 CRISPR-Cas9 进行基因编辑的首个产品和一系列基因疗法。特别是,exagamglogene autotemcel 是首个获得 FDA 批准的基于 CRISPR-Cas8 的基因编辑器,用于治疗镰状细胞病 (SCD)。这种体外基因治疗产品 (Exa-cel) 在 BCL11a 转录因子处进行了基因改造,重新启用了胎儿血红蛋白的产生。在这种情况下,β 血红蛋白的缺陷由治疗上调的胎儿血红蛋白补偿。尽管临床数据表明有治愈潜力,但仍需要进一步研究来证实其持久性。另一种基因疗法 lovotibeglogene autotemcel 已获批用于治疗 SCD。慢病毒载体用于插入编码非镰状血红蛋白 HbAT87Q 的转基因。基因编辑器和小分子有望在不久的将来取得进展,旨在提高可及性 ( 2 )。另一个备受瞩目的领域是补体系统,2023 年有四种抑制剂获得全面批准,涉及血液学和其他专业 ( 3 )。其中三种靶向末端补体 C5,这也是依库珠单抗的靶点。这种首创的补体抑制剂自 2007 年起获批用于治疗极为罕见的血液病阵发性睡眠性血红蛋白尿 (PNH)。2023 年,针对 C5 的 RNA 适体 avacincaptad pegol 已获批用于治疗眼部疾病。另一种针对 C5 的单克隆抗体是 pozelimab。 2023 年,pozelimab 获批用于治疗 CHAPLE(CD55 缺陷型蛋白丢失性肠病),扩大了补体抑制剂的应用范围。随着首个口服单药疗法 iptacopan(一种 B 因子抑制剂)获批用于治疗 PNH(4),该领域开辟了新视野。预计很快会出现更多的补体竞争产品,包括另一种针对因子 D 的口服补体抑制剂 ( 5 )。
• 2020 年 6 月虚拟会议:探索对偶性、几何和纠缠 • 2019 年 9 月马德里数学科学研究所。纠缠 IV:混沌、秩序和量子比特 • 2019 年 6 月京都汤川理论物理研究所。量子信息与弦理论 2019 • 2019 年 5 月格罗宁根大学。格罗宁根扫描新视野会议 (SNH2019) • 2019 年 5 月纳塔尔国际物理研究所。低维量子系统中的新兴流体动力学 • 2019 年 1 月阿鲁巴。地平线上的量子比特 • 2018 年 9 月蒙特利尔大学数学研究中心。多体系统中的纠缠、可积性和拓扑 • 2018 年 9 月班芬国际研究站,班芬。可积系统的 Tau 函数及其应用 • 2018 年 8 月维尔茨堡大学。2018 年规范/引力对偶 • 2018 年 1 月巴尔塞罗研究所,巴里洛切。It From Qubit 研讨会 • 2017 年 7 月巴黎高等师范学院。规范和弦理论中的可积性(IGST 2017) • 2017 年 7 月萨格勒布 Ruder Boskovi´c 研究所。萨格勒布第一理论物理学校 • 2016 年 12 月西蒙斯几何与物理中心,石溪。场论与引力中的纠缠 • 2016 年 12 月阿姆斯特丹 Delta 理论物理研究所。Delta ITP 纠缠研讨会 • 2016 年 7 月的里雅斯特国际理论物理中心。纯粹和无序系统的纠缠和非平衡物理 • 2016 年 6 月京都汤川理论物理研究所。全息和量子信息 • 2016 年 1 月马德里物理技术研究所。伊比利亚弦 2016 • 2016 年 1 月莱顿洛伦兹中心。引力、量子场和纠缠 • 2015 年 11 月伦敦大学学院。强纠缠多体系统的新趋势 2015 • 2015 年 9 月塞斯特里莱万特。里维埃拉的物理学 2015 • 2015 年 9 月南安普顿大学。第二届全息、规范理论和黑洞研讨会 • 2015 年 8 月纳塔尔国际物理研究所。凝聚态强耦合场论和量子信息论 • 2015 年 6 月圣巴巴拉 Kavli 理论物理研究所。缩小纠缠间隙:量子信息、量子物质和量子场 • 2015 年 2 月马德里物理技术研究所。纠缠:空间、时间和物质 • 2014 年 8 月雷克雅未克。全息方法和应用(HoloGrav 2014) • 2014 年 6 月普林斯顿大学。弦 2014(平行会议) • 2014 年 6 月科利马大学。Mextrings • 2014 年 6 月伦敦国王学院。多体量子系统中的纠缠熵 • 2014 年 5 月科尔托纳。理论物理学的新前沿。 XXXIV Convegno di Fisica Teorica • 3/2014 国际物理研究所,纳塔尔。量子可积性,共形场论和拓扑量子计算 • 12/2013 马德里物理研究所。XIX IFT 圣诞节研讨会
高级科学计算研究概述 高级科学计算研究 (ASCR) 计划的使命是推进应用数学和计算机科学;与学科科学合作提供最复杂的计算科学应用;推进计算和网络能力;并与包括美国工业界在内的研究界合作,为科学和工程开发未来几代计算硬件和软件工具。ASCR 支持通过计算实现科学发现的最先进的能力。ASCR 与科学办公室 (SC) 以及应用技术办公室、其他机构和行业的合作对于这些努力至关重要。ASCR 的计算机科学和应用数学活动为提高国家高性能计算 (HPC) 生态系统的能力奠定了基础,通过专注于长期研究来开发创新的软件、算法、方法、工具和工作流程,以预测未来的硬件挑战和机遇以及科学应用和能源部 (DOE) 任务需求。同时,ASCR 与学科科学合作,在对 SC、DOE 和国家具有战略重要性的领域提供一些最先进的科学计算应用程序。 ASCR 还部署和运营世界一流的开放式 HPC 设施和高性能科学研究网络基础设施。半个多世纪以来,美国通过持续投资于研究、开发和定期部署新的先进计算系统和网络以及有效使用它们的应用数学和软件技术,保持了世界领先的计算能力。美国计算领导力带来的好处是,在提高劳动力生产率、加速科学和工程进步、先进制造技术和快速成型以及无需测试的库存管理方面取得了巨大进步。计算科学使研究人员能够探索、理解和利用自然和工程系统,这些系统太大、太复杂、太危险、太小或太短暂,无法进行实验探索。HPC 的领导地位也在维持美国的竞争力方面发挥了至关重要的作用。人们认识到,在人工智能 (AI) 和计算与数据生态系统整合方面处于领先地位的国家将在开发创新清洁能源技术、药品、工业、供应链和军事能力方面引领世界。美国需要利用科学投资来创新新技术、新材料和新方法,以加强我们的清洁能源经济,并确保所有美国人都能分享这些投资的利益。计算科学的下一代突破将来自于采用极端规模的数据驱动方法,并与美国研究人员和 SC 用户设施生成的数据量和复杂性的大幅增加紧密结合。人工智能技术与这些现有投资的融合为创新和技术开发和部署创造了强大的加速器。量子信息科学 (QIS) ——利用复杂的量子力学现象创造获取和处理信息的全新方式的能力——正在开辟科学发现和技术创新的新视野,这些新视野建立在 SC 数十年的投资之上。能源部设想了一个未来,QIS 的交叉领域将越来越多地推动科学前沿和创新,以实现基于量子的应用的全部潜力,从计算到传感,通过量子互联网连接。然而,需要采取大胆的方法,更好地结合技术创新链的所有要素,并联合 SC、大学、国家实验室和私营部门的人才,共同努力,使美国能够引领世界走向量子未来。摩尔定律(即微芯片创新的历史速度,特征尺寸大约每两年缩小一半)由于基础物理和经济学的限制而即将终结。因此,众多新兴技术正在竞争以帮助维持生产力增长,每种技术都有自己的风险和机遇。ASCR 面临的挑战是了解它们对科学计算的影响,并为快速发展的技术可能带来的破坏做好准备,而不会扼杀创新或阻碍科学进步。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,继续与行业、应用技术办公室、其他机构以及百亿亿次计算项目 (ECP) 的科学界合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。ASCR 提议的活动将推动 AI、QIS、高级通信网络和百亿亿次级及以上的战略计算,以加速实现清洁能源未来、理解和应对气候变化、扩大我们在科学方面的投资影响以及提高美国工业的竞争优势。量子信息科学 (QIS) 是一种利用复杂的量子力学现象来创造获取和处理信息的全新方式的能力,它正在为科学发现和技术创新开辟新的前景,而这些创新建立在数十年来对量子信息科学的投入之上。美国能源部设想,未来量子信息科学这一交叉领域将不断推动科学前沿和创新,以实现量子应用的全部潜力,从计算到传感,通过量子互联网连接起来。然而,我们需要采取大胆的方法,更好地结合技术创新链的所有要素,并联合量子信息科学、大学、国家实验室和私营部门的人才,共同努力,使美国能够引领世界进入量子未来。摩尔定律(即微芯片创新的历史速度,特征尺寸大约每两年缩小一半)由于基础物理学和经济学的限制而即将结束。因此,许多新兴技术正在竞争以帮助维持生产力增长,每种技术都有自己的风险和机遇。 ASCR 面临的挑战是了解它们对科学计算的影响,并为快速发展的技术可能带来的颠覆做好准备,同时又不扼杀创新或阻碍科学进步。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,继续与行业、应用技术办公室、其他机构以及百亿亿次计算项目 (ECP) 的科学界合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。ASCR 提出的活动将推动 AI、QIS、先进通信网络和百亿亿次级及更高级别的战略计算,以加速实现清洁能源未来、理解和应对气候变化、扩大我们在科学方面的投资影响以及提高美国工业的竞争优势。量子信息科学 (QIS) 是一种利用复杂的量子力学现象来创造获取和处理信息的全新方式的能力,它正在为科学发现和技术创新开辟新的前景,而这些创新建立在数十年来对量子信息科学的投入之上。美国能源部设想,未来量子信息科学这一交叉领域将不断推动科学前沿和创新,以实现量子应用的全部潜力,从计算到传感,通过量子互联网连接起来。然而,我们需要采取大胆的方法,更好地结合技术创新链的所有要素,并联合量子信息科学、大学、国家实验室和私营部门的人才,共同努力,使美国能够引领世界进入量子未来。摩尔定律(即微芯片创新的历史速度,特征尺寸大约每两年缩小一半)由于基础物理学和经济学的限制而即将结束。因此,许多新兴技术正在竞争以帮助维持生产力增长,每种技术都有自己的风险和机遇。 ASCR 面临的挑战是了解它们对科学计算的影响,并为快速发展的技术可能带来的颠覆做好准备,同时又不扼杀创新或阻碍科学进步。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,继续与行业、应用技术办公室、其他机构以及百亿亿次计算项目 (ECP) 的科学界合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。ASCR 提出的活动将推动 AI、QIS、先进通信网络和百亿亿次级及更高级别的战略计算,以加速实现清洁能源未来、理解和应对气候变化、扩大我们在科学方面的投资影响以及提高美国工业的竞争优势。摩尔定律(即微芯片创新的历史速度,特征尺寸大约每两年缩小一半)由于基础物理和经济学的限制而即将终结。因此,众多新兴技术正在竞争以帮助维持生产力增长,每种技术都有自己的风险和机遇。ASCR 面临的挑战是了解它们对科学计算的影响,并为快速发展的技术可能带来的破坏做好准备,而不会扼杀创新或阻碍科学进步。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,继续与行业、应用技术办公室、其他机构以及百亿亿次计算项目 (ECP) 的科学界合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。ASCR 提议的活动将推动 AI、QIS、高级通信网络和百亿亿次级及以上的战略计算,以加速实现清洁能源未来、理解和应对气候变化、扩大我们在科学方面的投资影响以及提高美国工业的竞争优势。摩尔定律(即微芯片创新的历史速度,特征尺寸大约每两年缩小一半)由于基础物理和经济学的限制而即将终结。因此,众多新兴技术正在竞争以帮助维持生产力增长,每种技术都有自己的风险和机遇。ASCR 面临的挑战是了解它们对科学计算的影响,并为快速发展的技术可能带来的破坏做好准备,而不会扼杀创新或阻碍科学进步。ASCR 的战略是专注于建立在 SC 专业知识和核心投资基础上的技术,继续与行业、应用技术办公室、其他机构以及百亿亿次计算项目 (ECP) 的科学界合作;投资小规模试验台;并增加对应用数学和计算机科学的核心研究投资。ASCR 提议的活动将推动 AI、QIS、高级通信网络和百亿亿次级及以上的战略计算,以加速实现清洁能源未来、理解和应对气候变化、扩大我们在科学方面的投资影响以及提高美国工业的竞争优势。
高级糖基化终产物(年龄)是糖暴露引起的蛋白质或脂质的异常修饰。它们与衰老和各种退化性疾病有关,例如糖尿病,动脉粥样硬化,慢性肾脏疾病和阿尔茨海默氏症。年龄丰富的动物衍生的食物可以在烹饪过程中导致进一步的年龄形成,但目前尚不清楚饮食年龄是否有助于这些问题。年龄通常是通过代谢过程在体内产生的,尤其是高碳水化合物饮食。这种修饰会导致糖尿病并发症。年龄几乎影响体内的每个细胞和分子,在衰老和与年龄有关的疾病(如心血管疾病和阿尔茨海默氏病)中发挥作用。在糖尿病中,年龄可以诱导血管僵硬,低密度脂蛋白颗粒(LDL)的诱捕和LDL的糖化,从而促进氧化。氧化的LDL与动脉粥样硬化有关。年龄也与愤怒结合,导致血管内皮细胞中的氧化应激和炎症途径。所涉及的疾病包括阿尔茨海默氏病,心血管疾病,中风和白内障。年龄会导致肌肉功能降低,血管渗透性增加,动脉僵硬,抑制血管扩张以及增强的氧化应激。在糖尿病患者中,血红蛋白年龄水平升高,在视网膜,镜头和肾皮质中,年龄的积累随时间增加。抑制年龄形成可减少糖尿病大鼠的肾病。年龄形成可能会限制疾病进展并提供新的治疗工具。年龄具有特定的细胞受体,尤其是愤怒。激活这些受体会触发炎症反应,从而导致转录因子NF-κB的氧化应激和激活。这个过程有助于各种慢性炎症性疾病,例如动脉粥样硬化,哮喘,关节炎,心肌梗塞,肾病,视网膜病变,牙周炎和神经病。发病机理涉及NF-κB对参与炎症的基因的调节。年龄。在清除中,细胞蛋白水解产生年龄肽和“无年龄加合物”。这些被释放到血浆中并在尿液中排泄,除了无法通过基底膜的细胞外衍生的年龄蛋白。周围巨噬细胞和肝窦内皮细胞已与此过程有关。更大的年龄蛋白在排泄之前将其降解为肽和游离加合物。晚期糖基化终产物(RAGE)的受体激活触发了一系列事件,最终导致肾小球硬化和肾脏功能降低,而高级糖基化最终产物(年龄)的患者中的肾脏功能降低。年龄是由于非酶糖基化而产生的,该糖基化受到高血糖的恶化。年龄的分解产物比原始年龄蛋白更具侵略性,即使已经实现了葡萄糖控制,也可以使相关的病理永存。此外,有些年龄具有先天的催化氧化能力,而另一些年龄可以通过激活NAD(P)H氧化酶诱导氧化应激。饮食选择会影响年龄的形成。2007年的一项研究发现,NRK-49F细胞中TGF-β1,CTGF和FN mRNA的年龄显着增加了通过增强氧化应激而在NRK-49F细胞中的表达,这表明氧化应激的抑制可能是Ginkgo biloba biloba提取物在糖尿病性肾病中的作用。作者提出抗氧化剂治疗可以帮助防止年龄积累和造成损害。有效的清除对于防止年龄引起的损害是必要的,并且患有肾功能障碍的人可能需要进行肾脏移植。在糖尿病患者中经历了年龄增加的肾脏损害,肾脏损害减少了随后的尿量去除年龄,从而产生了积极的反馈回路,从而加速了损害。形成晚期糖基化末端产物(年龄)的形成可以受到某些化合物的限制,例如氨基瓜氨酸,它们与3-脱氧葡萄糖反应。年龄,导致氧化应激和炎症。乙二醛酶系统在分解年龄的前体的甲基乙醇中起作用。涉及吃未煮过的食物的原始食物主义可能会减少年龄的摄入量。n(6) - 羧甲基透析是与心血管疾病和衰老有关的年龄。研究表明,先进的糖基化终产物与各种健康问题有关,包括糖尿病,心血管疾病和衰老。晚期糖基化终产物(RAGE)的受体在这些疾病的发病机理中起作用。研究还发现,血清羧甲基赖氨酸与成年人主动脉脉冲波速度的增加有关。通过饮食变化限制年龄的摄入量可能有助于防止或减慢与年龄相关的疾病的发展。但是,需要更多的研究来充分了解年龄与人类健康之间的关系。注意:我试图在维护原始含义和上下文的同时总结文本的要点。研究人员一直在研究高级糖基化最终产品(年龄)对各种健康状况的影响。年龄是当蛋白质或脂肪与体内糖结合时形成的物质,导致氧化应激和炎症。研究表明,年龄可以导致糖尿病性心血管疾病,阿尔茨海默氏病和其他疾病。在孕妇中,年龄会影响胎儿发育,并可能与妊娠并发症的风险增加有关。晚期糖基化终产物(RAGE)的受体在该过程中起着关键作用,因为它与年龄结合并触发炎症。其他研究发现,年龄可以交叉链接蛋白并加速细胞中包含体的形成,从而导致细胞死亡。一些研究还探索了抑制愤怒的形成或活性的潜在益处,例如使用氨基瓜氨酸在中风期间预防神经毒性。此外,研究人员还研究了年龄对晶状体蛋白的影响及其在白内障发生中的作用。晚期糖基化终产物(年龄)的积累与与糖尿病有关的各种并发症,尤其是肾纤维化和氧化应激。但是,这些机制的有效性仍在争论中。总体而言,研究表明,在研究各种健康状况时,年龄是要考虑的重要因素,并且了解其机制可能会导致预防或治疗与氧化应激和炎症有关的疾病的新治疗策略。研究表明,年龄会通过触发炎症和疤痕来对肾细胞造成损害。几项研究调查了年龄在糖尿病性肾病中的作用,发现靶向年龄产生的抑制剂可以减缓疾病的进展。年龄是通过称为糖化的过程形成的,糖分子与蛋白质或脂质结合,导致氧化应激和炎症。年龄(愤怒)的受体通过触发促炎途径在介导这些作用中起关键作用。研究人员已经确定了可以抑制年龄产生的各种化合物,包括某些天然抗氧化剂和酶。此外,研究表明,通过清除剂受体介导的内吞作用或其他机制去除年龄可以帮助减轻氧化应激和炎症。总体而言,年龄,肾纤维化和氧化应激之间的关系一直是一个强烈的研究兴趣的话题,对开发与糖尿病相关并发症的新治疗方法的潜在影响。**晚期糖基化末期(年龄)**研究表明,晚期糖基化终产物(年龄)是当糖分子与体内蛋白质或脂质结合时形成的一种分子。这些年龄与包括糖尿病和阿尔茨海默氏病在内的各种疾病有关。**去除年龄**研究表明,某些酶(例如肝清除率)可以从体内清除年龄。**年龄和肾病**研究表明,口服吸收的反应性糖基化产物(糖毒素)可能有助于糖尿病性肾病。这表明年龄可能在与糖尿病相关的肾脏损伤的发展中发挥作用。**抗年龄化合物**几种化合物已被鉴定为年龄形成的潜在抑制剂,包括: *牛磺酸 *乙酰基-L-肉碱和α-脂肪酸 *阿司匹林 *白藜芦醇 * carnosine *这些化合物这些化合物可能有助于防止年龄形成并减轻其对身体的影响。**机制**研究还确定了可能有助于与年龄相关疾病发展的各种信号通路,包括: * PI3K/PKG/PKG/ERK1/2在皮质神经元中 * TRPA1-NRF信号途径中的毒素神经元中的潜在靶向介绍。**含义**年龄的积累与各种与年龄有关的疾病和状况有关。了解年龄形成和去除的机制对于为这些疾病开发有效治疗至关重要。先进的糖基化终产物(年龄)是一种多样化的化合物,它们通过人体自然和人为地通过人体的各种生化途径形成。它们是从糖,蛋白质或脂质的糖和游离胺基的羰基相互反应时会产生的,从而导致稳定,不可逆的终产物。研究表明,年龄在许多疾病和病理学中起着重要作用,包括糖尿病,癌症,心血管疾病,神经退行性疾病,甚至是Covid-19。它们被特定的细胞受体识别,这会引发炎症和氧化应激途径。尽管对年龄进行了许多研究,但它们与人类生理和病理学的复杂相互作用需要进一步研究。本综述着重于年龄受体的结构,它们在各种疾病中的作用以及导致内源性和外源性形成的过程。它还旨在将年龄分类为子组,并概述其创建所涉及的基本机制。这项研究强调了了解年龄及其受体的重要性,因为它们与广泛的疾病和疾病有关。需要进一步的研究以充分阐明年龄在人类生理和病理学中的作用。本文讨论了高级糖基化末端(年龄),这些糖基分子与蛋白质或脂质中的氨基反应时形成的化合物。作者描述了各种类型的年龄,包括葡萄糖衍生,果糖衍生和其他年龄,并为每种类型提供化学结构表示。本文还描述了年龄的受体(RAGE),该受体与年龄结合并在其细胞作用中起关键作用。图3显示了愤怒的域组织及其配体结合模式,包括与年龄相互作用的蛋白质的不同区域。最后,本文讨论了Stab1,这是另一种与年龄相互作用的蛋白质,并提供了其领域组织的图表。图4说明了Stab1和Stab2受体的结构域组织以及Stab2的Fas1结构域的结构。该图显示了Stab1和Stab2受体具有EGF样结构域重复序列,七个FAS1域,一个链路结构域,跨膜区域和一个细胞质(无序)结构域。随后,文本讨论了高级糖基化最终产物(年龄)及其受体(愤怒)对心肌收缩和线粒体功能的影响。它参考了几项研究,探讨了年龄和愤怒在心血管疾病中的作用。此外,该文本还提到了铁铁作用在糖尿病并发症中的潜在作用,以及年龄的动态作用及其与糖尿病的关系。本文还讨论了多元途径诱导的氧化和渗透应激在糖尿病性白内障病因中的协同作用。此外,它突出了选定的植物来源的多酚作为外围动脉疾病的潜在治疗剂,以及巨噬细胞免疫调节的新视野,以治愈糖尿病足溃疡。此参考资料是从2022年开始的,可以通过医学公共图书馆(PMC)免费访问。已审查了所讨论的来源,这意味着其内容已由专家彻底检查和验证。