Univessel ® Glass 是我们为所有 Biostat ® 台式生物反应器提供的平台培养容器。它有 1 L、2 L、5 L 和 10 L 的工作容量可供选择。得益于新设计和向后兼容性 - 所有现有的探针、浸管、喷射器和叶轮也适用于新的 Univessel ® Glass。
→2021年12月,EASA发布了拟议的特殊条件,以解决新设计认证项目CARI中强调的安全问题→2022年4月26日EASA发布了最终的特殊条件M-TS-0000419(过去的参考文献sc- g25.1585-01)和相关的CRD→sib寄给操作员:
Univessel ® Glass 是我们为所有 Biostat ® 台式生物反应器提供的平台培养容器。它有 1 L、2 L、5 L 和 10 L 的工作容量可供选择。受益于新设计和向后兼容性 – 所有现有的探头、浸管、喷射器和叶轮也适用于新的 Univessel ® Glass。
登陆火星。现在他们已经到达火星,他们面临的新设计挑战是建造一个可以探索火星的火星探测器模型。在他们的模型上,学生必须有一个电源和样本收集组件的表示。(例如岩石、土壤)• 与学生讨论他们可能考虑的有关火星的以下细节
本研究旨在为歧管找到最佳材料,并改善Unimap汽车赛车团队(UNIART)排气歧管的气流。排气歧管是排气系统的一部分,它收集并从气缸盖到排气插座排气气。排气歧管的设计对发动机性能很重要。使用SolidWorks软件对排气歧管的当前设计和新设计进行了建模。不锈钢,铸铁和低碳钢作为歧管材料,并通过进行稳态热分析来研究。根据压力和速度分析和评估了歧管中空气的流动。在称为ANSYS的计算流体动力学分析软件中模拟流体流量和热分析。热分析的结果证明,不锈钢比其他材料更好,因为它具有高温差和低热量。比较了排气歧管的当前设计和新设计之间的流体流量分析结果。结果表明,经过验证的设计2在出口处具有较高的速度值,在入口处的压力较低,从而改善了排气歧管中的气流。
我们已经建立了先进聚变中子源 (A-FNS) 的概念设计。为了获得聚变 DEMO DT 反应堆合格材料所需的辐照数据,我们新设计了九个测试模块 (TM) 以在 A-FNS 中实施。测试模块的设计基于一种新的独特维护方案:“与屏蔽塞集成的水平维护方法”。测试模块中 F82H 样品的目标 dpa 在运行可用率为 50% 的运行期间约为 10dpa/fpy。我们确定了测试单元中 TM 的配置,以实现每个测试模块所需的辐照数据。我们对锂靶系统的氚迁移进行了初步估计。发现需要 10 5 m 3 /h 的连续通风和几个容积为 30 m 3 的排水箱来排放每周的废水。 A-FNS 的设计目的是使产生的大量中子不仅可用于聚变材料辐照,还可用于各种非聚变用途。我们新设计了一个模块,用于生产大量用于医疗用途的 99 Mo。这种非聚变用途的模块可以安装在测试单元中,并兼容聚变材料辐照测试。
• 3D 打印或增材制造 (AM) 在实现航空航天应用的新设计空间方面已显示出良好的前景。 • 每种 AM 技术都有一系列优点和缺点。 • 与其使用 AM 生产众所周知的铸造和锻造合金,不如将 AM 视为生产目前难以制造的材料的新机会。 • 在本研究中,使用 L-PBF 是因为其尺寸精度较高。
摘要 传统的航空航天设计方法提供了快速有效的方法来生成新设计,但这些新设计通常与以前的设计相似。然而,对于真正创新的设计,需要一种不同的方法。本文建议,一种称为“参数分析”(PA)的通用概念设计方法可用于教授和实践创新航空航天设计。为了支持这一主张,我们调查了四个不同、创新和独特的案例研究,它们均由经验丰富的航空航天设计师进行:第二次世界大战的“炸坝”弹跳炸弹、20 世纪 70 年代的 Gossamer Condor 人力飞机、20 世纪 90 年代的非对称 Boomerang 双引擎飞机和 21 世纪初的 SpaceShipOne 亚轨道航天器。本文详细阐述了如何调整和应用案例研究方法以提供支持研究假设的证据,并展示了案例研究的分析结果。这表明,专业的航空航天设计师遵循了与 PA 类似的思维过程,即使是在不知不觉中,其中相似性是通过计算案例研究中可以证明存在的 PA 特征的数量来衡量的。还讨论了研究方法的优点和局限性。
o NAMI 简介 o NAMI Gen‐1 轻质混凝土的更新及其影响 o 可持续发展的研发 • 采用 GGBS 的结构级轻质混凝土 • 利用回收玻璃和烟气的发泡技术 o 创新的结构设计 • 结构应用的新材料 • 混凝土 MiC 联锁的新设计 o 实施:香港首个轻质混凝土钢 MiC o 结束语
IQ Battery 5P 采用全新电池模块设计,以减少电池单元之间的热失控。新设计已针对 UL 9540A 第 4 版进行了评估。此测试使用书面的 UL 9540A 标准进行,未使用 UL 认证要求决定 (CRD)。测试在 NFPA 286 防火测试室中进行,其中气体成分由标准中定义的傅里叶变换红外 (FTIR) 气体分析仪测量。