自主物流信息系统 (ALIS) 对于支持 F-35 飞机的运营和维护至关重要。然而,GAO 在其 2020 年 3 月报告中访问的 5 个地点的 F-35 人员提到了几个挑战。例如,我们访问的所有 5 个地点的用户都表示,ALIS 中 F-35 部件的电子记录经常不正确、损坏或丢失,导致系统发出信号,表示在人员知道部件已正确安装并且可以安全飞行的情况下,飞机应该停飞。有时,F-35 中队领导会决定在 ALIS 发出不要飞行的信号时驾驶飞机,从而承担满足任务要求的运营风险。GAO 发现,国防部 (1) 尚未为 ALIS 制定性能衡量流程来定义系统应如何运行,或 (2) 尚未确定 ALIS 问题如何影响 F-35 机队的整体战备状态,该状态仍然低于作战人员的要求。
自主物流信息系统 (ALIS) 对于支持 F-35 飞机的运营和维护至关重要。然而,GAO 在其 2020 年 3 月报告中访问的 5 个地点的 F-35 人员提到了几个挑战。例如,我们访问的所有 5 个地点的用户都表示,ALIS 中 F-35 部件的电子记录经常不正确、损坏或丢失,导致系统发出信号,表示在人员知道部件已正确安装并且可以安全飞行的情况下,飞机应该停飞。有时,F-35 中队领导会决定在 ALIS 发出不要飞行的信号时驾驶飞机,从而承担满足任务要求的运营风险。GAO 发现,国防部 (1) 尚未为 ALIS 制定性能衡量流程来定义系统应如何运行,或 (2) 尚未确定 ALIS 问题如何影响 F-35 机队的整体战备状态,该状态仍然低于作战人员的要求。
1 电气、电子与通信工程系,拉斯海玛美国大学,阿拉伯联合酋长国,拉斯海玛 电子邮件:hattia@aurak.ac.ae 2 机械与工业工程系,拉斯海玛美国大学,阿拉伯联合酋长国,拉斯海玛 电子邮件:mousa.mohsen@aurak.ac.ae 3 机械与工业工程系,拉斯海玛美国大学,阿拉伯联合酋长国,拉斯海玛 电子邮件:basil.qadoor@aurak.ac.ae 4 机械与工业工程系,拉斯海玛美国大学,阿拉伯联合酋长国,拉斯海玛 电子邮件:mohammed.alshamsi@aurak.ac.ae 5 机械与工业工程系,拉斯海玛美国大学,阿拉伯联合酋长国,拉斯海玛 电子邮件:o.abdulsalam@aurak.ac.ae 6 机械与工业工程系工程学,拉斯海玛美国大学,拉斯海玛,阿拉伯联合酋长国 电子邮件:z.abdulrahim@aurak.ac.ae
柯林斯航空航天公司一直在为国防部设计未来军用飞机的起落架。该项目和报告重点关注前起落架阻力支架组件的设计、分析和重新设计。起落架被视为飞机上的主要结构部件之一。虽然起落架可能只占飞机总重量的一小部分,但它承受着巨大的负荷,并且在起飞、降落和地面操作期间必须承受高应力。起落架可能承受拉伸、压缩、扭转、剪切和弯曲。在起落架的设计过程中,必须考虑和分析所有这些因素。起落架设计极具迭代性,正如本报告所示,在最终设计投入制造之前,需要对单个组件以及整个组件进行多次修改。阻力支架对于组件来说至关重要,这绝对适用于起落架。本报告将介绍设计和重新设计阻力支架组件所需的步骤,重点介绍主要部件,例如上部和下部阻力支架、拨动杆、连杆和主轴销。还重点讨论了这些部件的实际结构分析,因为这可能是设计阶段最关键的方面。利用 FEA 分析部件以应用它们在操作过程中将看到的实际负载。FEA 结果可帮助应力分析师发现高应力位置以及弯曲和挠度水平。基于这些结果,可以进行有效的重新设计。请注意,由于这是一个军事计划,因此必须省略所有专有/技术数据才能使用。这意味着无法显示太多实际负载、尺寸或计算。这也包括 CAD 模型中的任何识别特征。因此,所有 CAD 模型都将被简化。已提供尽可能多的细节来展示可靠的设计概念和流程,而不会侵犯柯林斯航空航天技术数据政策。致谢:我要感谢柯林斯航空航天公司允许我将我的工作成果用于我的高级设计项目。我还要感谢我的同事和导师对这个项目的帮助以及我从他们那里获得的所有工程知识。Paul Wang 是我在柯林斯工作期间最优秀的导师。我从他那里学到的所有应对压力的技术技能将贯穿我整个职业生涯。
摘要 免疫肿瘤 (IO) 药物迅速崛起,引起了业界、患者和医生前所未有的关注,并对大多数癌症的治疗产生了重大影响。许多 IO 药物临床开发中一个有趣的方面是越来越依赖非常规试验设计,包括所谓的“主方案”,它结合了各种自适应功能,并且通常严重依赖生物标志物来选择最有可能受益的患者群体。这些新颖的设计有望最大限度地提高临床研究的临床效益,但并非没有代价。要让它们被接受为研究环境之外使用的坚实证据基础,需要多个利益相关者进行深刻的文化变革,包括监管机构、决策者、统计人员、研究人员、医生,最重要的是患者。在这里,我们回顾了最近和正在进行的采用非常规设计的 IO 药物试验的特点,并强调了趋势和关键方面。
b. 2008 年,退伍军人工程资源中心 (VERC) 成立。它们协助系统重新设计和改进促进和咨询区域和国家层面的合作计划。 2010 年是重要的一年,因为发布了第一本 VHA 改进框架指南,其中介绍了 VA 愿景-分析-团队-目标-地图-测量-变革-维持 (VA TAMMCS)。VA TAMMCS 为流程改进专业人员和员工提供了急需的标准化指导。同年,开设了第一所国家改进咨询学院,为参与者提供了项目管理、多种改进方法和工具、数据和统计分析、协调和团队关系、变革管理和领导参与工具方面的深入知识,所有这些都支持培养强大的改进专业人员,以支持系统重新设计和改进办公室的使命。
b. 2008 年,退伍军人工程资源中心 (VERC) 成立。它们协助系统重新设计和改进促进和咨询区域和国家层面的合作计划。2010 年是重要的一年,因为发布了第一本 VHA 改进框架指南,其中介绍了 VA 愿景-分析-团队-目标-地图-测量-变化-维持 (VA TAMMCS)。VA TAMMCS 为流程改进专业人员和员工提供了急需的标准化指导。同年,开设了第一所国家改进咨询学院,为参与者提供了项目管理、多种改进方法和工具、数据和统计分析、促进和团队关系、变革管理和领导参与工具方面的深入知识,所有这些都支持培养强大的改进专业人员,以支持系统重新设计和改进办公室的使命。
图 1:光聚合物分层系统 (Wikipedia.org)。...................................................................... 2 图 2:使用相交激光束的光雕塑过程 (Swainson, 1977)。........................................ 3 图 3:塔式喷嘴固体自由成型技术 (drajput.com)....................................................... 4 图 4:简单的分层铸造模具 (DiMatteo, 1976)。...................................................................... 4 图 5:粉末选择性激光烧结工艺 (Wikipedia.org)。...................................................... 5 图 6:FDM 工艺图 (Reprap.org)。............................................................................. 7 图 7:DFA 分析软件用户界面 (Boothroyd et al, 2011)。...................................................... 11 图 8:MakerBot 的 MakerWare 用户界面。(Makerbot.com)............................................. 14 ........... 20 图 10:GE Aviation 通过增材制造的燃油喷嘴(Rockstroh 等,2013 年)。 ........................ 21 图 11:通过 DMLS(EADS)优化和制造的两个航空航天支架。 ........................ 23 图 12:“Over-the-wall”设计方法图解(Munro & Associates,1989 年)。 ...... 24 图 13:成本与影响图“谁投射的阴影最大?”(Munro & Associates,1989 年)。 ......................................................................................................................................... 24 图 14:显示不同材料和制造方法之间兼容性的图表(Boothroyd & Dewhurst,2011 年)......................................................................................................... 26 图 15:alpha 和 beta 旋转对称值(Boothroyd 等,2011 年)。 ................................... 28 图 16:影响零件处理的几何特征(左)和其他特征(右) (Boothroyd et al, 2011). ........................................................................................................................................... 28 图 17:提高装配简易性的示例 (Boothroyd et al, 2011). ............................................................................................................. 28 图 18:影响插入时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999). ............................................................................................................. 30 图 19:影响手动处理时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999). ............................................................................................................. 31 图 20:原始控制器组装 (Boothroyd et al, 2011). ............................................................................................. 32 图 21:分析前(左)和分析后(右)的控制器组装 (Boothroyd et al, 2011). ................................................................................................................................................................. 34 图 22:当前门铰链的组件。 ...................................................................................................... 35 图 23:两个已安装铰链的 CATIA 模型和负载分析方向(湾流宇航)。 ...................................................................................................................... 36 图 24:弹簧球和铰链止动器的特写。 ...................................................................................... 37 图 25:重新设计的增材制造门铰链。 ...................................................................................... 39 图 26:合并前后鹅颈的视觉比较。 ............................................................................. 41 图 27:重新设计前后球柱塞壳体的视觉比较。 ............................................................................. 41 图 28:原始铰链组件上用于插入计算的投影槽。 ............................................................................. 43 图 29:重新设计的铰链组件上用于插入计算的投影槽。 ............................................................................. 43
图 1:光聚合物分层系统 (Wikipedia.org)。.............................................................. 2 图 2:使用相交激光束的光雕塑过程 (Swainson, 1977)。......... 3 图 3:塔式喷嘴固体自由成型技术 (drajput.com).................................... 4 图 4:简单的分层铸造模具 (DiMatteo, 1976)。.............................................................. 4 图 5:粉末选择性激光烧结工艺 (Wikipedia.org)。................................................ 5 图 6:FDM 工艺图 (Reprap.org)。.................................................................... 7 图 7:DFA 分析软件用户界面 (Boothroyd et al, 2011)。.................................... 11 图 8:MakerBot 的 MakerWare 用户界面。(Makerbot.com) .................................... 14 图 9:简化的挤压系统,说明轴位置 (Wikipedia.org)。........... 20 图 10:GE Aviation 的增材制造燃油喷嘴 (Rockstroh 等人,2013)。......... 21 图 11:通过 DMLS (EADS) 优化和制造的两个航空航天支架。....... 23 图 12:"Over-the-wall" 设计方法的说明 (Munro & Associates,1989)。...... 24 图 13:成本与影响图“谁投下的阴影最大?” (Munro & Associates,1989)。...................................................................................................................................... 24 图 14:显示不同材料和制造方法之间兼容性的图表(Boothroyd & Dewhurst,2011)............................................................................................. 26 图 15:alpha 和 beta 旋转对称值(Boothroyd et al,2011)。................... 28 图 16:影响零件处理的几何(左)和其他(右)特征(Boothroyd et al,2011)。...................................................................................................................................... 28 图 17:提高组装便利性的示例(Boothroyd et al,2011)。................................ 28 图 18:影响插入时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999)。...................................................................................................................... 30 图 19:影响手动处理时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999)。................................................................................................ 31 图 20:原始控制器组件(Boothroyd 等人,2011 年)。...................................................... 32 图 21:分析前(左)和分析后(右)的控制器组件(Boothroyd 等人,2011 年)。........................................................................................................................................... 34 图 22:当前门铰链的组件。........................................................................................................... 35 图 23:两个已安装铰链的 CATIA 模型和负载分析方向(湾流宇航)。.................................................................................................................................... 36 图 24:弹簧球和铰链止动器的特写............................................................................. 37 图 25:重新设计的用于增材制造的门铰链。.................................................... 39 图 26:鹅颈加固前后的视觉对比。........... 41 图 27:重新设计前后球柱塞壳体的视觉对比。........... 41 图 28:原始铰链组件上用于插入计算的投影槽。......... 43 图 29:重新设计的铰链组件上用于插入计算的投影槽。.... 43
图 1:光聚合物分层系统 (Wikipedia.org)。...................................................................... 2 图 2:使用相交激光束的光雕塑过程 (Swainson, 1977)。........................................ 3 图 3:塔式喷嘴固体自由成型技术 (drajput.com)....................................................... 4 图 4:简单的分层铸造模具 (DiMatteo, 1976)。...................................................................... 4 图 5:粉末选择性激光烧结工艺 (Wikipedia.org)。...................................................... 5 图 6:FDM 工艺图 (Reprap.org)。............................................................................. 7 图 7:DFA 分析软件用户界面 (Boothroyd et al, 2011)。...................................................... 11 图 8:MakerBot 的 MakerWare 用户界面。(Makerbot.com)............................................. 14 ........... 20 图 10:GE Aviation 通过增材制造的燃油喷嘴(Rockstroh 等,2013 年)。 ........................ 21 图 11:通过 DMLS(EADS)优化和制造的两个航空航天支架。 ........................ 23 图 12:“Over-the-wall”设计方法图解(Munro & Associates,1989 年)。 ...... 24 图 13:成本与影响图“谁投射的阴影最大?”(Munro & Associates,1989 年)。 ......................................................................................................................................... 24 图 14:显示不同材料和制造方法之间兼容性的图表(Boothroyd & Dewhurst,2011 年)......................................................................................................... 26 图 15:alpha 和 beta 旋转对称值(Boothroyd 等,2011 年)。 ................................... 28 图 16:影响零件处理的几何特征(左)和其他特征(右) (Boothroyd et al, 2011). ........................................................................................................................................... 28 图 17:提高装配简易性的示例 (Boothroyd et al, 2011). ............................................................................................................. 28 图 18:影响插入时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999). ............................................................................................................. 30 图 19:影响手动处理时间的零件特征原始分类系统 (Boothroyd Dewhurst, Inc. 1999). ............................................................................................................. 31 图 20:原始控制器组装 (Boothroyd et al, 2011). ............................................................................................. 32 图 21:分析前(左)和分析后(右)的控制器组装 (Boothroyd et al, 2011). ................................................................................................................................................................. 34 图 22:当前门铰链的组件。 ...................................................................................................... 35 图 23:两个已安装铰链的 CATIA 模型和负载分析方向(湾流宇航)。 ...................................................................................................................... 36 图 24:弹簧球和铰链止动器的特写。 ...................................................................................... 37 图 25:重新设计的增材制造门铰链。 ...................................................................................... 39 图 26:合并前后鹅颈的视觉比较。 ............................................................................. 41 图 27:重新设计前后球柱塞壳体的视觉比较。 ............................................................................. 41 图 28:原始铰链组件上用于插入计算的投影槽。 ............................................................................. 43 图 29:重新设计的铰链组件上用于插入计算的投影槽。 ............................................................................. 43