Alcantara,Marion; Simonin,Mathieu; Ludovic的Lhermitte; Touzart,Aurore;杜尔,玛丽·埃米莉(Marie Emilie); Latiri,Mehdi;灰色,纳塔莉; Cayuela,Jean Michel;查兰登,伊夫; Graux,卡洛斯; Dombret,Hervé; Ifrah,诺伯特;小,阿诺德; MacIntyre,&nbspelizabeth [还有3个]Alcantara,Marion; Simonin,Mathieu; Ludovic的Lhermitte; Touzart,Aurore;杜尔,玛丽·埃米莉(Marie Emilie); Latiri,Mehdi;灰色,纳塔莉; Cayuela,Jean Michel;查兰登,伊夫; Graux,卡洛斯; Dombret,Hervé; Ifrah,诺伯特;小,阿诺德; MacIntyre,&nbspelizabeth [还有3个]
物联网(IoT)在现代生活中广泛使用,例如在智能家居,智能运输等中。但是,由于物联网对恶意袭击的脆弱性,目前的安全措施无法完全保护该物联网。入侵检测可以保护物联网设备作为安全工具的最有害攻击。然而,常规入侵检测方法的时间和检测效率需要更准确。本文的主要贡献是开发一个简单的智能安全框架,以保护物联网免受网络攻击。为此,在拟议的工作中开发了决定性的红狐(DRF)优化和描述性背部传播径向函数(DBRF)分类的组合。这项工作的新颖性是,与机器学习算法合并的最近开发的DRF优化方法可用于最大化物联网系统的安全水平。首先,进行数据预处理和归一化操作以生成平衡的物联网数据集,以提高分类的检测准确性。然后,应用DRF优化算法以最佳调整精确入侵检测和分类所需的功能。它还支持提高训练速度并降低分类器的错误率。此外,还部署了DBRF分类模型,以使用优化的功能对正常和攻击数据流进行分类。在这里,建议的DRF-DBRF安全模型的性能使用五个不同且流行的IOT基准测试数据集进行了验证和测试。最后,通过使用各种评估参数将结果与先前的异常检测方法进行比较。
糖尿病(DM),尤其是2型糖尿病(T2DM),是全球最普遍的慢性疾病之一,具有广泛的并发症,严重影响了患者的生活质量(1-3)。此外,糖尿病并发症,例如糖尿病性视网膜病(DR),糖尿病性肾病(DN),糖尿病足溃疡(DFUS),Sarcopenia和Neuropathy,尽管糖尿病护理的进步,但仍继续挑战临床管理(4-6)。与糖尿病相关并发症的基础机制涉及各种因素,包括代谢障碍,免疫反应,内皮功能障碍和线粒体损伤等(7-10)。为了更深入地了解与糖尿病相关并发症的病理生理学,我们组织了当前的研究主题,“对与糖尿病相关并发症的病理生物生物生物生物生物的新颖见解:在促进II的改善治疗策略的影响之后”,此后,II卷,旨在探索这些机构的成功I,旨在探索这些机制。该研究主题于2023年5月23日启动,并于2025年1月17日关闭。在这几个月中,收到了总共88项提交的意见,包括84项手稿和4个摘要。Finally, 37 high-quality articles were selected and published, covering a wide range of topics related to diabetes-related complications, including DR, DN, diabetic peripheral neuropathy (DPN), T2DM-associated periodontitis, metabolic regulation, immune-in fl ammatory processes, and emerging biomarkers ( Yang et al.,Li等。 ,Li等。 ,他等人。 ,Xu等。 )。,Li等。,Li等。 ,他等人。 ,Xu等。 )。,Li等。,他等人。,Xu等。)。这些研究不仅为推动这些并发症的机制提供了新的见解,还强调了潜在的生物标志物,
Anuj Jalwal先生,Garima Kumawat女士摘要:社交媒体的出现彻底改变了信息的传播和社会话语的动态。具有快速传播内容的能力,数字平台已成为塑造性别和种姓叙事,影响公众舆论,政策框架和基层行动主义的强大工具。社交媒体用作双刃剑 - 一方面,它为边缘化,促进意识和动员提供了声音;另一方面,它构成了诸如错误信息,在线骚扰和数字排除等挑战。本文深入研究了社交媒体对性别和种姓叙事的深远影响,强调了它如何成为当代社会运动的基本力量。数字平台,包括Twitter,Facebook和Instagram,使历史上被压迫的群体挑战了主导的叙事并要求正义。#METOO,#DalitlivesMatter和#AmbedKariteMovements之类的动作已获得前所未有的动力,引起人们对系统性问题的关注并促使社会和法律改革。社交媒体内容的病毒性质可确保即使本地化问题也可以受到全球关注,从而加强集体行动主义。此外,本文研究了算法,数字素养差距和状态干预措施如何影响这些讨论的轨迹。虽然数字平台声称可以促进自由表达,但人工智能和算法偏见的作用通常会以可能加强现有功率结构的方式来策划内容。关键字:数字起义,社交媒体,性别,种姓,行动主义,在线话语由于数字划分进一步加剧了在线话语中的不平等,因此排除了边缘化社区。尽管具有变革性的潜力,但社交媒体充满了风险,包括网络欺凌,错误信息和有针对性的骚扰。妇女和达利特活动家经常成为在线虐待的受害者,沉默的声音并阻碍进步。此外,国家监视和审查制度对数字行动主义的真实性和可持续性构成了重大威胁。本文探讨了政策和法规如何在保留言论自由和民主参与原则的同时确保更安全的数字空间。使用混合方法方法,本研究整合了定性案例研究和定量数据分析,以评估社交媒体在放大性别和种姓叙事方面的有效性。批判性地评估了这些数字运动是否会导致切实的社会变化,还是仅限于现实世界影响有限的在线空间。本文结束了,强调需要一个包容性的数字生态系统,在这种生态系统中,不仅听到边缘化的声音,而且受到了保护。增强数字素养,实施强大的反骚扰政策以及确保公平的互联网访问对于维持有意义的话语至关重要。随着社交媒体的不断发展,其作为性别催化剂和种姓正义的潜力取决于优先考虑包容性,道德监管和民主参与的积极措施。
遥感场景(RSS)图像分类在城市规划和环境保护等各个领域中起着至关重要的作用。然而,由于较高的阶层间相似性和类内变异性,实现RSS图像的准确性分类对当前卷积神经网络(CNN)基于基于的卷积神经网络(CNN)和基于视觉变压器(VIT)的方法构成了巨大挑战。为了解决这些问题,本文提出了一种新颖的双重编码方法,该方法从特征提取和融合的两个角度来看,名为Master-Slave编码网络(MSE-NET)。基于VIT的主编码器提取了高级语义特征,而基于CNN的从属编码器捕获了相对较低级别的空间结构信息。sec-,为了有效地整合两个编码器的特征信息,本文进一步制定了两种融合策略。第一个策略涉及辅助增强单元(AEU),该单元消除了两个编码器之间的语义差异,可增强对奴隶编码器的空间环境意识并促进有效的特征学习。交互式感知单元(IPU)作为第二种策略,促进了两个编码器表示的相互作用和集成,以提取更具歧视性的特征信息。此外,我们在四个广泛使用的RSS数据集上进行了比较实验,包括RSSCN7,Siri-Whu,空中图像数据集(AID)和NWPU-RESISC45(NWPU45),以验证有效性
摘要。用户如何与智能系统进行交互是由系统内部工作的主观心理模型来确定的。在本文中,我们提出了一种基于卡片排序的新方法,以定量地识别推荐系统的这种心理模型。使用此方法,我们进行了在线研究(n = 170)。将分层聚类应用于结果显示出不同的用户组及其各自的心理模型。独立于所使用的建议系统,一些术语具有严格的基于程序性的,而另一些则是基于概念的心理模型。此外,心理模型可以被描述为技术或人性化。虽然基于程序的心理模型与透明度感知呈正相关,但人性化模型可能会影响对系统信任的感知。基于这些发现,我们在透明智能系统设计中考虑了用户特定的心理模型的三个含义。
脉搏率(PR)是评估一个人健康的最重要标记之一。随着对长期健康监测的需求不断增长,使用成像光电学(IPPG)对非接触式PR估计的关注非常关注。这种非侵入性技术基于肤色细微变化的分析。尽管可以改善IPPG,但现有算法容易受到较不受约束的场景(即头部移动,面部表情和环境条件)。在本文中,我们提出了一个新颖的端到端时空网络,即X-ippgnet,直接从面部视频记录中直接进行瞬时PR估计。不像大多数现有系统一样,我们的模型从头开始学习IPPG概念,而无需结合任何先验知识或通过提取血液体积脉冲信号的提取。受Xception网络体系结构的启发,颜色通道解耦用于学习其他照相学信息信息,并概念地降低计算成本和内存重新质量。此外,X-ippGnet可以从短时间窗口(2秒)中预测脉搏率,该脉冲率具有较高且明显的脉搏率的优点。实验结果揭示了在所有条件下的高性能,包括头部运动,面部表情和肤色。我们的AP-PRACH明显优于三个基准数据集上的所有当前最新方法:MMSE-HR(MAE = 4。10; RMSE = 5。32; r = 0。85),ubfc-rppg(Mae = 4。99; RMSE = 6。26; r = 0。67),mahnob-hci(Mae = 3。17; RMSE = 3。93; r = 0。88)。
Devang Khakhar KJ Somaiya技术研究所,孟买,印度摘要:量子力学通过在原子和亚原子量表上提供了对物质行为的基本见解,从而改变了材料研究。这项研究的目的是研究量子力学在材料科学中的应用,重点是它对材料的性质和行为提供的见解。我们研究了核心量子力学思想,例如波颗粒二元性,schrödinger方程和量子状态,并检查这些思想如何适用于材料科学。此外,我们研究了量子力学很重要的特定领域,例如电子结构计算,频带理论和量子限制效应。本文强调了量子力学的跨学科特征及其对增加对材料的理解的巨大影响,从而使新材料的设计和发现。关键字:量子力学,材料科学,原子量表,电子结构,量子限制。
1,2名Nanasaheb Mahadik工程学院的学生,Peth,3名Nanasaheb Mahadik工程学院的助理教授,Peth摘要:脑电图(EEG)信号是神经科学的重要工具。人体的行为可以由人脑中的数百万个神经元控制。EEG是一种有效的方式,有助于获取大脑信号对应于头皮表面积的各种状态。 eeg不过是大脑的电活动。 我们知道冥想以来很重要。 冥想会对我们的大脑信号产生更多影响。 最近,大脑信号对抑郁症,记忆力丧失,压力等脑部疾病引起了强烈关注。 因此,这项工作旨在研究OM冥想的重要性,这对于那些受压力的人以及对日常工作感到烦恼的人们可能会非常奇迹。 在这项工作中,对OM诵经信号进行分析,并进行分类,以验证冥想的重要性。 该过程涉及主要两个步骤:第一步是预处理或提取功能,第二阶段是应用机器学习算法。 这些方法的性能可以通过对数据和定量指标(例如准确性,灵敏度,精度)进行评估。 关键字:脑电信号,OM诵经,机器学习,大脑,DWTEEG是一种有效的方式,有助于获取大脑信号对应于头皮表面积的各种状态。eeg不过是大脑的电活动。我们知道冥想以来很重要。冥想会对我们的大脑信号产生更多影响。最近,大脑信号对抑郁症,记忆力丧失,压力等脑部疾病引起了强烈关注。因此,这项工作旨在研究OM冥想的重要性,这对于那些受压力的人以及对日常工作感到烦恼的人们可能会非常奇迹。在这项工作中,对OM诵经信号进行分析,并进行分类,以验证冥想的重要性。该过程涉及主要两个步骤:第一步是预处理或提取功能,第二阶段是应用机器学习算法。这些方法的性能可以通过对数据和定量指标(例如准确性,灵敏度,精度)进行评估。关键字:脑电信号,OM诵经,机器学习,大脑,DWT
生态学家,尤其是恢复生态学家,很早就认识到历史上史无前例的物种组合和人类干预带来的非生物条件的挑战。迄今为止,这种生态理解对社会文化考虑的关注有限。我们提出了新颖性的概念,以在自然界的新颖性感知和评估中结合生态和社会维度,并在迅速的环境变化时期协助保护和恢复决策。Jasper Montana,Tina Heger,Rosine Kelz,Armin Bischoff,Rob Buitenwerf,Uta Eser,Katie Kung,Julia Sattler,Andreas H. Schweiger,Adam Searle,Leonardo H. Teixeira,Bruno Travassos-Britto,Eric tivgs eric Higgs