摘要:铝和硫的高丰度和低成本使AL-S电池成为有吸引力的组合。但是,需要显着改善性能,并且增加硫电极的厚度和硫含量对于开发具有特定能量竞争价值的电池至关重要。这项工作报告了硫含量最高的硫电极的发展(60%wt。)迄今为止针对AL-S电池系统的报道,并对硫电极厚度对电池性能的影响进行了系统的研究。使用使用乙酰氨酰胺或尿素制成的低成本电解质时,当增加电极厚度时,电解质物种的质量缓慢被确定为硫酸盐利用率不良的主要原因,而完全粘性的离子离子液体可实现完全的硫。此外,对非常薄的电极的分析揭示了低成本电解质中降解反应的发生。总而言之,此处开发的新分析方法非常适合评估AL-S电池的新型电解质的稳定性和质量传输局限性。
移动机器人在行业和各种服务领域的广泛应用中拥有巨大的潜力。因此,广泛的研究工作致力于解决缺陷并提高其绩效。在机器人技术中的关键挑战中是避免障碍物,这使机器人能够沿着计划的路径遇到的意外物体导航。已经提出了许多方法和算法,以防止机器人和检测到的障碍之间的碰撞。这些方法通常依赖于在每个步骤都具有精确了解机器人位置的关键假设。本文在室内环境中介绍了一种新颖的方法,用于避免障碍物,利用部分已知空间和A*算法的占用网格图。所提出的方法通过有关机器人状态的不精确信息解决了方案。最初,使用人工神经网络将初步的占用网格图改进并转化为增强的图。随后,将A*算法应用于修改的地图。此外,开发了一种算法来指导机器人从起点到目标端点。遇到新出现的障碍时,机器人在避免障碍的同时,动态地适应了达到目标的道路。在三种不同的情况下,通过对两轮机器人的模拟来验证所提出的方法的功效。结果证明了该方法在室内环境中有效浏览机器人的能力,即使具有不精确的状态信息。该算法确保机器人与障碍物保持安全距离,从而展示其实用应用的潜力。
我们确定了一种新的共振,即轴磁共振,可以极大地提高轴和光子之间的转换率。一系列的轴搜索实验依赖于将它们转换为恒定磁场背景中的光子。这种实验的常见瓶颈是当m a≳10-4eV抑制轴质量的转换幅度。我们指出,磁场中的空间或时间变化可以取消光子分散关系和轴支的差异,从而大大提高了转换概率。我们证明,通过螺旋磁场曲线和大小的谐波振荡可以实现增强。我们的方法可以在Ma¼10-3-eV时通过两个数量级在轴突 - 光子耦合(gaγ)中扩展预计的Alps II触及范围,并具有适度的假设(请参阅https://github.com/chensun-phys/chensun-phys/axion-phys/axion-magnetic-magnetic-rivs>。)
使用光学相干断层扫描(OCT)图像对大型脉络膜血管进行精确分割,使前所未有的定量分析能够理解脉络膜疾病。在本文中,我们提出了一个称为MFGNET的新型多尺度和精细网络。由于脉络膜血管是小目标,因此需要考虑远距离依赖性,因此,我们开发了一个两组细粒的特征提取模块,可以将变压器提取的远程信息与在两个分支之间引入信息交换的卷积中提取的局部信息。为了解决OCT图像中脉络膜血管的低对比度和模糊边界的问题,我们开发了一个较大的内核和多尺度注意模块,该模块可以通过多尺度卷积内核,通道混合和特征进行补充来改善目标区域的特征。我们用手动注释的大型脉络膜容器在800 OCT图像上定量评估了MFGNET。实验结果表明,与当前可用的最先进的分割网络相比,所提出的方法具有最佳性能。值得注意的是,根据分割结果将大型脉络膜血管在三个维度(3D)中重建,并计算了几个3D形态参数。对这些参数的统计分析揭示了健康对照组和高近视组之间的显着差异,从而确认了拟议工作在促进后来对疾病和临床决策的促进方面的价值。
C-Met酪氨酸激酶结构域的两个X射线晶体结构; PDB代码:分别从蛋白质数据库(www.rcsb.org)中检索出野生和突变体类型的4xyf [1]和2RFS [2]。为了确定导致C-MET,ABL1和IGF1R之间亲和力差异的结构基础,也从蛋白质数据库中获得了ABL1(PDB代码:3OXZ [3])和IGF1R(PDB代码:1JQH [4])的晶体结构。实施了蛋白质制备向导,以制备每种蛋白质的激酶结构域。该蛋白质是通过分配键订单,添加氢,创建二硫键和使用ProPKA(丹麦詹森研究小组)优化H键网络来重新处理的。最后,使用优化的液体模拟电势(OPLS_2005,Schrödinger)力场应用了0.30°A的RMSD值的能量最小化。
图1:ANJ-DNA生产Raav。anj-DNA旨在编码辅助构建体和RAAV生产所需的repcap以及利益基因(GOI)。有趣的是,我们的GOI旨在具有模仿AAV2 ITR的发夹结构,因此可以复制并将其包装到Raav中,而无需额外的侧翼序列。可以定制这三个构造以编码任何必需的GOI或优化的助手序列。ANJ-DNA也可以与其他质粒或包装细胞系组合使用,以进行AAV产生。
作者要感谢患者参加试验的参与。作者还想感谢Alina Monteagudo,Kristen Catron,Jacqueline Matczak,Dharmendra Chaudhari,Atula Godwin,Heather Godwin,Heather Gong,Ben Heller和April Dovholuk的贡献。医学写作和社论支持由Red Nucleus Company Alphabiocom的Claire Strothman博士提供,并由Repleimune,Inc。(美国马萨诸塞州Woburn)资助。
作为骨体内平衡的关键调节者,Sclerostin在过去的二十年中引起了很多兴趣。尽管硬化素主要由骨细胞表达,并且以其在骨形成和重塑中的作用而闻名,但它也由许多其他细胞表达,并可能在其他器官中起作用。在此,我们旨在将硬化蛋白的近期研究汇总在一起,并讨论硬化蛋白对骨,软骨,肌肉,肝脏,肾脏和心血管和免疫系统的影响。特别关注其在疾病中的作用,例如骨质疏松症和骨髓瘤,以及硬化蛋白作为治疗靶点的新型发育。抗骨蛋白抗体最近已被批准用于治疗骨质疏松症。然而,观察到心血管信号,促使对硬化蛋白在血管和骨组织串扰中的作用进行了广泛的研究。在慢性肾脏疾病中的硬化蛋白表达的研究之后,研究了其在肝脏 - 脂质 - 骨相互作用中的作用,最近发现硬化蛋白作为肌动物作为肌动物的发现促使对骨 - 肌肉关系中的硬化蛋白进行了新的研究。可能,硬化蛋白的作用超出了骨骼的影响。我们进一步总结了使用硬化蛋白作为骨关节炎,骨肉瘤和硬化症的潜在治疗方法的最新发展。总的来说,这些新的治疗方法和发现说明了该领域内的进步,也突出了我们所知的剩余差距。