2025年第一个克罗地亚医学杂志(CMJ)发行的准备工作一直是当年的诱人开始。我们通过评估我们发表的内容的范围,并试图确定标志着已预定周期的最突出的主题来反映上一年。浏览了我们的社论和封面上于2024年发表的封面揭示了各种主题。主题范围从新技术在医学中的应用到人性化的医学,对神经外科的有前途的生物标志物的调查,卫生专业人员的教育,在特权较低的学术社区中的科学压力以及适应人工智能时代(AI)时代的编辑政策(1-6)。毫不奇怪,最有影响力的出版物涉及科学,医学,医疗保健和科学出版中AI辅助技术的应用。AI的迅速崛起及其对社会的影响引起了包括科学出版在内的所有领域的许多辩论和争议。ai虽然不是完全“障碍的新孩子”,但正在彻底改变基本的社会范式,并且可以说是催化了一种民族化的转变。在医学方面,尤其是对未来医学专业人员的教育时,AI表现出了许多积极的方面,尤其是在现代基于AI的教育方法与传统的教育方法(个性化,人文化)的融合方面。这是本期本期间发表的评论的主题,该评论研究了将现代和传统助理在教学解剖学中结合的有用性,这是医学研究的基础之一(7)。作者令人信服地精确
生态学家,尤其是恢复生态学家,很早就认识到历史上史无前例的物种组合和人类干预带来的非生物条件的挑战。迄今为止,这种生态理解对社会文化考虑的关注有限。我们提出了新颖性的概念,以在自然界的新颖性感知和评估中结合生态和社会维度,并在迅速的环境变化时期协助保护和恢复决策。Jasper Montana,Tina Heger,Rosine Kelz,Armin Bischoff,Rob Buitenwerf,Uta Eser,Katie Kung,Julia Sattler,Andreas H. Schweiger,Adam Searle,Leonardo H. Teixeira,Bruno Travassos-Britto,Eric tivgs eric Higgs
摘要 应对重大挑战需要新形式的协作创新来支持涉及异构参与者的复杂设计流程。本文专门研究了共同设计如何支持有前景的新颖性锚定到多个社会技术系统中,以加速它们各自的可持续性转型。适用于这种多系统环境的共同设计框架源自转型研究和设计和创新管理研究。该框架基于 27 个案例研究进行了实证验证,其中要锚定的新颖性对应于地球观测数据。作为转型研究的贡献,本文展示了这种多系统共同设计框架如何通过构建在不同时间范围内开展的相关行动,为新颖性开发人员提供一种诊断工具来阐明他们的锚定策略。还提出了几种对锚定概念的丰富,强调了不同形式的锚定之间的一些互补性以及该过程的无尽性。本文对设计和创新管理研究做出了贡献,通过考虑跨越社会技术系统通常界限的背景并关注组织集体设计会议之前的诊断维度,从新颖的角度阐明了共同设计。共同设计框架还强调了一种所谓的“基于资源”的协作创新形式,旨在为面临重大挑战的异质参与者构建基于新颖性的资源。这种方法是对更常见的“基于挑战”方法的补充,旨在直接应对有针对性的挑战。关键词:共同设计、协作创新、重大挑战、可持续性转型、锚定、多层次视角、战略利基管理、地球观测数据、数字创新
三重进入簿记可能看起来像是令人费解的新颖性,因为经典的基于累计的双重簿记簿记已在数百年来一直很好地满足了会计需求。本文批判性地是前宗主的,从Yuji Ijiri 1980年代的概念开始,通过真正的第三分类账条目开始,对动量和武力的概念开始。尽管他的提议未能获得吸引力,但三重入境术语在2000年代初期重新浮出水面,新的重点是利用密码学的进步。大约在15年后,三重入口簿记的第三次迭代就出现了,因为提案开始与比特币和其他加密货币发起的区块链趋势保持一致。尽管有更丰富,与决策的会计数据和值得信赖,不可变的分类帐的诱人承诺,但我们认为所有这些建议最终都无法说服。三重进入簿记主要是促进新颖理论或技术的流行语,而不是在会计方面提供有形,有用的进步。
摘要:对晶体材料的化学空间,尤其是金属 - 有机框架(MOF)的实验探索,需要对大量反应的多组分控制,这是不可避免地会在手动执行时耗时和劳动力。为了在保持高可重复性的同时加速物料发现速率,我们开发了一种与机器人合成平台集成的机器学习算法,用于闭环探索多氧盐损坏金属金属 - 有机框架(POMOFS)的化学空间。通过使用从不确定性反馈实验获得的更新数据和基于其化学构成的POMOF分类的多类分类扩展,通过使用更新数据来优化极端梯度提升(XGBoost)模型。POMOF的机器人合成的数字签名由通用化学描述语言(χDL)表示,以精确记录合成步骤并增强可重复性。九种新颖的Pomofs,其中包括具有良好的可重复性的POM胺衍生物与各种醛的硫胺衍生物的胰岛化反应,这些pomofs具有源自单个配体的混合配体。此外,根据XGBoost模型绘制了化学空间图,其F1得分高于0.8。此外,合成的Pomofs的电化学性质表明,与分子POMS相比,较高的电子转移和Zn比率的直接效应,所使用的配体的类型以及POMOFS中的拓扑结构用于调节电子传递能力。■简介
Savoie Mont Blanc, CNRS, Laboratoire d'Anecy de Physique des Particules-In2p3, F-74000 Annecy, France 29 University of Naples "Federico II", I-80126 Naples, Italy 30 Ligo Laboratory, Massachusetts Institute of Technology, Cambridge, but 02139, USA 31 maastricht University, 6200 MD马斯特里奇,荷兰32 Nikhef,1098 XG阿姆斯特丹,荷兰33 Universit´e Libre de Brussels,布鲁塞尔,布鲁塞尔1050,比利时34 Institut Fresnel,Aix Marseille University E,CNRS,CNR,CNRS,Centrale Marseille,Centrale Marseille,Centrale Marseille,F-13013 Marseille,f-13013 Marseille,France 35 clise 35 cliss-sac-sac iclis in cliss in clis in clis in clis in clis in clis in clis in clise in 23 91405 ORSAY,法国36东京大学,东京,日本113-0033。 37巴塞罗那大学(UB),c。 MART´I i Franqu'es,1,08028西班牙,西班牙38 de f´ısica d'Als Energies(Ifae),巴塞罗那科学技术研究所,校园UAB,E-08193 Bellaterra(巴塞罗那),西班牙贝尔特拉(Bellaterra),西班牙39 Gran Sasso Science Institute Institute floriany(Gran Saquitute)盖恩斯维尔,佛罗里达州32611,美国41数学,计算机和物理科学系,Udine大学,I-33100,I-33100,意大利Udine,42 INFN,Trieste,I-34127,I-34127,意大利TriesteSavoie Mont Blanc, CNRS, Laboratoire d'Anecy de Physique des Particules-In2p3, F-74000 Annecy, France 29 University of Naples "Federico II", I-80126 Naples, Italy 30 Ligo Laboratory, Massachusetts Institute of Technology, Cambridge, but 02139, USA 31 maastricht University, 6200 MD马斯特里奇,荷兰32 Nikhef,1098 XG阿姆斯特丹,荷兰33 Universit´e Libre de Brussels,布鲁塞尔,布鲁塞尔1050,比利时34 Institut Fresnel,Aix Marseille University E,CNRS,CNR,CNRS,Centrale Marseille,Centrale Marseille,Centrale Marseille,F-13013 Marseille,f-13013 Marseille,France 35 clise 35 cliss-sac-sac iclis in cliss in clis in clis in clis in clis in clis in clis in clise in 23 91405 ORSAY,法国36东京大学,东京,日本113-0033。37巴塞罗那大学(UB),c。 MART´I i Franqu'es,1,08028西班牙,西班牙38 de f´ısica d'Als Energies(Ifae),巴塞罗那科学技术研究所,校园UAB,E-08193 Bellaterra(巴塞罗那),西班牙贝尔特拉(Bellaterra),西班牙39 Gran Sasso Science Institute Institute floriany(Gran Saquitute)盖恩斯维尔,佛罗里达州32611,美国41数学,计算机和物理科学系,Udine大学,I-33100,I-33100,意大利Udine,42 INFN,Trieste,I-34127,I-34127,意大利Trieste
https://www.cambridge.org/corsharnous-a-a-a-a-a-a-a-a-a-a-a-a-a-a-a-af528181818 .../dim>
分子和具有精确纳米级操纵功能的细胞纳米射流。他们在肿瘤学中的应用,尤其是在癌症检测,诊断,药物管理和治疗方面具有巨大潜力。纳米技术可以增强癌症成像敏感性,克服药物抗药性并改善转移性癌症的治疗。但是,设计成本和相关挑战带来了重大限制。为克服这些障碍并充分利用纳米机器人的潜力是必要的。在接下来的十年中,有可能将我们的血液注入微观纳米机器人,从而有助于维持我们的健康,甚至促进我们的思想转移到无线云中。在分子水平上运行,这些纳米机器人将保留我们的生物系统并确保健康延长的寿命。仍在
超人人工智能 (AI) 将如何影响人类决策?这种影响背后的机制是什么?我们在 AI 已经超越人类表现的领域中解决这些问题,分析了过去 71 年(1950 年至 2021 年)专业围棋选手做出的 580 多万步决策。为了解决第一个问题,我们使用超人人工智能程序来估计人类决策随时间变化的质量,生成 580 亿个反事实游戏模式,并将实际人类决策的胜率与反事实人工智能决策的胜率进行比较。我们发现,在超人人工智能出现后,人类开始做出明显更好的决策。然后,我们研究了人类玩家随时间变化的策略,发现在超人人工智能出现后,新颖的决策(即以前未观察到的举动)出现得更频繁,并且与更高的决策质量相关。我们的研究结果表明,超人类人工智能程序的发展可能促使人类玩家摆脱传统策略,并引导他们探索新颖的动作,从而可能改善他们的决策能力。
摘要 我们日常生活中的连续视觉体验以变化为主。先前的研究主要关注由于刺激运动、眼球运动或展开事件而引起的视觉变化,但没有关注它们对大脑的综合影响,或它们与语义新颖性的相互作用。我们研究了观看电影时对这些新颖性来源的神经反应。我们分析了 23 名受试者的 6328 个电极上的颅内记录。与扫视和影片切换相关的反应在整个大脑中占主导地位。语义事件边界处的影片切换在颞叶和内侧颞叶中特别有效。对具有高视觉新颖性的视觉目标的扫视也与强烈的神经反应相关。高阶关联区域的特定位置对高或低新颖性扫视表现出选择性。我们得出结论,与影片切换和眼球运动相关的神经活动遍布整个大脑,并受到语义新颖性的调节。