尽管存在潜力,但声纳浮标特有的众多复杂因素可能会对使用 DIFAR 信号进行方位角估计的准确性、声学数据的质量以及数据解释产生负面影响。本报告旨在确定数据收集方法,以缓解许多与依赖声纳浮标进行声学记录和方位角估计的海洋哺乳动物声学研究相关的问题。这包括建议的数据收集硬件和软件方法、硬件系统的校准以及部署和校准声纳浮标的协议和方法。这些硬件和软件方法预计会随着时间的推移而发生变化,在实施涉及声纳浮标的研究计划之前,应考虑最近的技术进步。
波导和谐振器中的麦克斯韦方程可以通过有限元法 (FEM) 4,5 或其众多替代方法中的任何一种来求解。6–13 本文并未声称 FEM 作为建模工具具有卓越的效率或灵活性,尽管它的便利性和可访问性已在目前应用它的几个商业上成功的软件平台 14,15 中得到体现。无论使用哪种方法,完整表示麦克斯韦方程(以便同时求解所有三个场分量)所需的编码/配置工作量都可能很大,并且已被各种商业软件应用程序或附加模块所吸收。13–15 然而,据作者所知,没有这样的应用程序可以直接配置为利用圆形 WGM 已知的方位角依赖性,即。exp ( ± i Mφ ) ,其中 M(≥ 0 的整数)是模式的方位角模式阶数,φ 是方位角坐标。因此,没有侵入式黑客攻击,没有人能够实现从 3D 到 2D 的计算优势问题简化。流行的 MAFIA/CST 包 13 基于“有限积分法”,16 就是一个很好的例子; 17 就数值效率而言,最好的办法是模拟径向电壁和磁壁之间的“楔形”[在方位角域 Δ φ = π/ (2 M ) 宽]。18
跟踪。由于 2-D 雷达提供的绘图数据仅包含距离和方位角信息,由于可观测性问题,无法使用单个传感器估计目标高度,因此需要结合从多个 2-D 雷达获得的信息(距离和方位角)。如果只有两个主雷达检测到飞机,则无法使用多点定位技术在空中交通管制系统中确定其高度。一次监视雷达 (PSR) 仅提供飞机的斜距和方位角测量,因此,空中交通管制 (ATC) 系统通常使用从飞机机载模式 C 应答器获得的高度信息来估计飞机的三维位置和速度。二次监视雷达 (SSR) 通常用于询问模式 C 和其他应答器并获取高度和其他
II 通信卫星:轨道和描述:卫星通信简史、卫星频段、卫星系统、应用、轨道周期和速度、轨道倾角的影响、方位角和仰角、覆盖范围和斜距、日食、轨道摄动、卫星在地球静止轨道上的位置
磁方位角通常可以通过磁力计的输出数据来评估。这些传感器能够估计基本方向的方向,从而计算出与北方的倾斜度。它们的测量结果包含由周围硬磁和软磁材料引起的误差。它们的影响可以通过适当的校准来消除,因此这是测量磁方位角过程中无法避免的重要步骤。然而,即使经过校准,测量结果也会受到磁力计本身不确定性的影响。因此,必须将输出数据与其他方法交替使用才能获得更精确的结果。陀螺仪为上述问题带来了解决方案。它们可以测量相对于测量起点的方位角。仅凭这种方位角是不可能检测到与北方的倾斜度的。然而,陀螺仪的测量可以伴随磁力计获得的磁方位角,并提高整体精度。如何结合这两个方位角的一种选择属于数字滤波器领域。对于这种情况特别有用的是线性互补滤波器。
在预处理步骤中,处理参数根据原始数据和元数据确定(例如CEOS 领导者文件)。在距离压缩期间,可以通过预过滤在方位角上抽取数据以进行快速查看图像处理。方位角处理器使用距离多普勒算法,并根据 RADARSAT-1 数据的要求选择二次距离偏移。用户可以选择图像的输出几何形状是倾斜校正还是非倾斜校正。自动对焦算法用于改进沿轨平台速度估计。处理后的图像针对天线方向图、雷达的沿轨增益变化、方位角和距离参考函数的长度以及斜距进行辐射归一化。使用有源转发器或通过与机构处理的校准数据进行交叉验证,确定了许多可用传感器/模式的绝对校准常数。已经证明,伽马处理器可以保留干涉处理的相位。多视图像由单视复杂图像样本的时间域平均生成。处理相关参数和数据特性保存为文本文件,可以使用商业绘图包显示。支持使用精密轨道(“Delft”、PRC、DORIS)。支持 ASAR 替代极化 (AP) 原始数据处理。对于 PALSAR-1,支持细光束单极化 (FBS)、细光束双极化 (FBD) 以及来自 JAXA(针对科学用户)或 ERSDAC(针对商业用户)的全极化数据处理。此外,还支持 PALSAR-1 ScanSAR 原始数据处理。对于 COSMO-SkyMed,支持所有条带模式的 RAW 数据处理。不支持 Sentinel-1 数据的原始数据处理。
第一海岸警卫区缅因州、新罕布什尔州、佛蒙特州、马萨诸塞州、罗德岛州、康涅狄格州、纽约州(北纬 42° 以北、西经 74°39' 以西部分除外);新泽西州北纬 40°18' 以北、西经 74°30.5' 以东以及北纬 40°18'、西经 74°30.5' 线东北部,北偏西北至纽约、新泽西和宾夕法尼亚州在特里斯特的边界;所有美国纽芬兰岸上的海军保留区;加拿大和美国之间搜救边界所涵盖的海域,东至西经 63°。;然后正南至北纬 41°;然后向西南沿方位角 219°T 的线行进到 37°N、67°13'W 的交点,与新泽西州海岸线北纬 40°18'(什鲁斯伯里河正南)的方位角 122°T 的线行进;然后沿此线向西北行进到海岸。
如今,空间碎片已成为卫星系统的主要威胁之一,尤其是在低地球轨道 (LEO) 上。据官方估计,有超过 700,000 个碎片物体有可能摧毁或损坏卫星。通常,无法从地面直接识别撞击的影响。但是,高分辨率雷达图像有助于检测这种可能的损坏。此外,还可以对未知的空间物体或卫星进行调查。因此,DLR 开发了一种名为 IoSiS(太空卫星成像)[2, 3] 的实验雷达系统,该系统基于现有的转向天线结构和名为 GigaRad [1] 的多用途高性能雷达系统,在传播方向上的分辨率优于 5 厘米。在横向或方位角方向上,通过使用逆合成孔径雷达 (ISAR) 技术,可以获得高空间和距离独立分辨率。该技术基于沿合成孔径从不同角度对物体进行相干观察,需要在轨道通过期间精确跟踪物体。因此,要在距离和方位角上获得相似的分辨率,就必须进行宽方位角观测。对于一个 ISAR 图像,5 厘米的预期空间分辨率意味着大约 25° 的观测角。如此高的空间分辨率不是遥感雷达应用的标准。目前的地球观测系统实现的分辨率在几分米的数量级,比现有系统差一个数量级。因此,这种改进需要相应更高的系统和轨道校正性能。特别是,对雷达电子设备、天线和馈电频率响应进行足够精确的校准至关重要。此外,还必须对观测物体进行精确的轨道测定。本文概述了 IoSiS 雷达系统的主要技术特点。讨论了主要的误差源和相应的解决方案。说明了最终生成几厘米分辨率的雷达图像的校准工作。
1.词汇和缩写 遥感和地理信息系统领域积累了大量技术词汇和短语以及首字母缩略词。这些列在本报告的开头,以供参考并帮助理解后面的讨论。吸收:从辐射光谱中去除能量。反照率:从表面反射的入射光的百分比。相当于反射率。反太阳点:从观察者的角度来看,与太阳正对的位置;潜在的阴影位置。球面上与太阳成 180 度的点。方位角:倾斜表面朝向的方位角。姿态:观景台(例如飞机)的方向。方位角:水平方向角,0 度 = 北,90 度 = 东,等等。反向散射:辐射大致朝源方向的反向偏转。波段:与特定波长范围有关。波段组合:用于可视化或计算的一组波段。波段比率:将一个图像波段除以另一个图像波段,以减少阴影效果并增强差异。BGR:蓝-绿-红;显示色带的顺序;与 RGB 顺序相反。黑体:不反射辐射的全吸收体。注意:在热平衡中,黑体的吸收和辐射速率相同;当保持热平衡时,辐射将刚好等于吸收。这个假设的物体由足够数量的分子组成,这些分子发射和吸收电磁波谱所有部分的电磁辐射,因此所有入射辐射都被完全吸收,并且在所有波长带和所有方向上,都能实现最大可能的发射。CAD:计算机辅助设计;一组点、线、多边形、形状、文本,通常没有矢量的严格拓扑规则。校准:将数值调整为标准参考。
减去乘客座位,旋翼机可以在地面附近安全飞行的最大重量、高度和温度,最大风速根据 CS 29.143(c) 确定,并且可能包括其他已证实的风速和方位角。操作范围必须在旋翼机飞行手册的限制部分中说明。