丰富度与更好的编辑活动有关[54,55]。均聚物据报道偶尔会降低SGRNA效率[54-56]。 可以用两种算法之一来计算sgrna裂解预期位点的预测概率的目标分数:(1)Doench等人开发的原始规则集2分数。 cas9 sgrnas [57],并以方位角更新(github.com/microsoftresearch/azimuth);或(2)用于与CAS12A SGRNA一起开发的Cindel分数[53]。 最后,可用的靶向活动评分算法包括HSU等人开发的分数。 [58]和Doench等人开发的切割确定(CFD)得分。 [57]。 两者都是基于选择的SGRNA与目标基因组中所有其他可能的SGRNA之间成对比较的分数,并且使用系数矩阵确定成对得分,该系数矩阵在SGRNA中考虑了不匹配位置,以及在CFD得分的情况下确定了不匹配的身份。 因为两个分数的系数矩阵均来自均聚物据报道偶尔会降低SGRNA效率[54-56]。可以用两种算法之一来计算sgrna裂解预期位点的预测概率的目标分数:(1)Doench等人开发的原始规则集2分数。cas9 sgrnas [57],并以方位角更新(github.com/microsoftresearch/azimuth);或(2)用于与CAS12A SGRNA一起开发的Cindel分数[53]。最后,可用的靶向活动评分算法包括HSU等人开发的分数。[58]和Doench等人开发的切割确定(CFD)得分。[57]。两者都是基于选择的SGRNA与目标基因组中所有其他可能的SGRNA之间成对比较的分数,并且使用系数矩阵确定成对得分,该系数矩阵在SGRNA中考虑了不匹配位置,以及在CFD得分的情况下确定了不匹配的身份。因为两个分数的系数矩阵均来自
在最坏的情况下,敌人在对四轴飞行器控制器的射频 (RF) 链路与信号情报 (SIGINT) 测向设备进行三角测量后,向排发出间接火力。为避免泄露机密和随后的利用,飞行员应在飞行操作期间通过在控制器和敌方传感器之间放置地形特征来实施地形遮蔽,以降低其射频信号。同样,飞行员可以尝试在会反射无线电波的地形附近飞行,并导致错误的方位角,从而产生敌方测向误差。例如,在印度尼西亚的丛林巡逻期间,排左右两侧较茂密的植被和陡坡有助于限制探测。但是,排领导在权衡沿着渠道地形移动的战术风险与敌方 SIGINT 威胁的可能性时,必须考虑现有的情报估计。
雷达在恶劣天气下的稳健性和提供动态信息的能力使其成为高级驾驶辅助系统 (ADAS) 中摄像头和激光雷达的宝贵补充 [1]。尽管用于 RGB 图像和激光雷达点云 (PC) 的语义分割深度学习方法已经很成熟,但它们在雷达中的应用仍未得到充分探索,尤其是包含额外海拔信息的 4D 雷达数据 [2] [3] [4] [5]。本文通过提出一种直接在距离-方位角-海拔-多普勒 (RAED) 张量上执行语义分割的方法来解决这一研究空白。此外,还引入了一种新颖的自动标记流程来在 RaDelft 数据集中生成逐点多类标签,从而实现使用雷达数据的联合检测和分类。
摘要:在这项工作中,我们研究了偶氮Pazo(Poly [1- [4-(3-羧基-4-羟基苯基唑))苯磺胺硫胺的薄膜中记录的衍射光栅的极化特性。使用两个四分之一波板,将SLM的每个像素的相位延迟转换为线性偏振光的方位角旋转。从样品的偶氮聚合物侧记录时,使用原子力显微镜观察出明显的表面浮雕幅度。相比之下,样品的底物记录允许减少表面浮雕调制和获得极化光栅,其特性接近理想的光栅,并以两个正交圆形极化记录。我们的结果证明,即使在四像素的光栅期间也可以实现这一目标。
为了解决这一限制,太阳跟踪系统的发展已成为太阳能技术的关键进步。这些系统旨在连续调整太阳能电池板的方向,从而确保它们在天空中移动时垂直于太阳射线。这样做,太阳跟踪系统可以显着增加捕获的太阳能的数量,从而提高太阳能装置的总体效率和输出。该项目中介绍的自动太阳跟踪太阳系是一种复杂的解决方案,该解决方案利用双轴跟踪以最大程度地捕获能量捕获。该系统配备了旋转编码器和直流电动机驱动程序,可控制水平(方位角)和垂直(高程)平面中太阳能电池板的运动。这些组件由微控制器单元(MCU)管理,该单元(MCU)从传感器和实时时钟(RTC)处理数据,以确保对太阳能电池板位置的精确和及时调整。
增加光伏(PV)的渗透会降低PV电力的边际网格值,这可能会限制太阳能部署,从而阻碍脱碳目标的实现。PV项目开发人员可以以保留此价值的方式改变植物的设计。开发人员可以进行简单的倾斜和方位角调整,或结合更多的变换变化,例如垂直双面模块,辅助服务的提供以及添加储能。伯克利实验室(Berkeley Lab)的一项新研究出现在应用能源中,分析了美国这些策略的净价值(成本和网格价值)。该研究对与历史和预计的美国批发电力价格相关的各种太阳渗透率上多个独立PV+存储配置的成本和价值进行了全面分析。一些关键发现:
不同(伪)快度(η)下局部流平面之间的方位角关联可以揭示重离子碰撞中初始核物质密度分布的重要细节。对因子分解比(r2)及其导数(F2)的大量实验测量表明存在纵向流平面去相关。然而,非流动效应也会影响该观测量并阻碍对该现象的定量理解。在本文中,为了区分去相关和非流动效应,我们提出了一个新的累积量可观测量T2,它在很大程度上抑制了非流动。用一个简单的蒙特卡洛模型测试了该技术对不同初态场景和非流动效应的敏感性,最后将该方法应用于多相传输模型(AMPT)模拟的√Au+Au 碰撞事件
基于核粉的离子对撞机设施(NICA)正在俄罗斯杜巴纳联合核研究所(JINR)建设。nica将在质量中心系统中的√snn = 4至11 GEV的范围内的能量碰撞(198 Au + 198 Au,209 Bi + 209 Bi)在√snn = 4至11 GEV的范围内,以提供在高净 - 巴里密度区域研究此问题的机会[1]。NICA的多用途检测器(MPD)实验将测量对状态方程(EOS)敏感的各种突出的诊断探针和强相互作用的物质的转运性能[2,3]。中,最突出的是,相对于碰撞对称平面而言,生成的Hadron的方位角集体流[4]。可以通过傅立叶系数v n在粒子方位角分布的扩展中进行量化。
本文介绍了为麻省理工学院林肯实验室开发的机载平台相位干涉测向系统的开发。相位干涉仪使用相位差来确定接收信号的到达角 (AoA),但无法区分超过一个周期的相位差,从而导致相位模糊。该团队利用三个天线来解决相位模糊问题,并能够在包括 170 ◦ 视场的真实噪声模型的模拟中将 X 波段接收电磁信号的方位角 AoA 确定在 ± 0.1 ◦ 以内。使用基于 FPGA 的板子实现了原型,该板子用于数据采集,通过 USB 连接到 PC 进行分析,该 PC 通过 TCP 连接连接到另一台 PC 进行跟踪和显示。硬件只能使用两个通道。此限制导致 AoA 计算中的解决方案不明确。该团队为系统开发了一个图形用户界面,以向系统操作员显示结果。
高次谐波桨距长期以来一直是一种有吸引力但尚未开发的方法,用于减少振动转子载荷和由此产生的机身振动。这个概念很简单。大多数直升机振动源于转子叶片在方位角周围旋转时遇到的不均匀速度分布。这种不均匀分布是由于叶片相对于飞行方向不断变化和转子下方不规则的涡流尾流造成的。由此产生的叶片攻角随方位角的变化包含转子轴速度的每个谐波。然而,只有某些谐波会引起振动载荷并传递到机身。许多谐波会在各个叶片上产生载荷,这些载荷在轮毂处完全相互抵消。高次谐波叶片螺距叠加在传统的零和每转一的叶片螺距控制上,是一种选择性控制攻角谐波的方法。•会产生振动,