概述 美国海军工程司令部东南司令部已经建立了区域呼叫中心 (RCC),为美国海军工程司令部东南责任区 (AOR) 提供服务。RCC 位于杰克逊维尔海军航空站,由政府和合同工全职值班,24/7/365 不间断工作。RCC 通过电子邮件和电话接收紧急、加急、常规和 IMP 服务请求。所有服务请求均按照个人 PWD 标准操作程序 (SOP) 进行处理,并纳入 MAXIMO。首次启动于 2012 年 1 月 30 日。RCC 目前处理美国海军工程司令部东南、西北和夏威夷 AOR 的 22 个设施的所有紧急、加急、常规和 IMP 请求。如果发生可预见/不可预见的紧急情况,导致 103 号楼在 24-48 小时内无法使用,RCC 将把 24/7 全天候运营转移到 110 号楼 2014 室 2 楼备用紧急运营中心 (EOC)。如果发生可预见的持续超过 48 小时的紧急情况(例如飓风),救援协调中心将把业务转移到彭萨科拉海军航空站。联邦雇员需要出示个人政府信用卡才能出行。合同雇员的预授权将通过合同官员进行协调。救援协调中心计划在 COR 3 撤离,那里可能在 48 小时内出现破坏性强风(50 节)。救援协调中心将在 COR 2 撤离,那里预计在 24 小时内会出现破坏性强风。根据紧急情况的严重程度、持续时间和时间,救援协调中心将把全天候业务转移到杰克逊维尔海军航空站 110 号楼或彭萨科拉海军航空站 3561 号楼。彭萨科拉海军航空站被认为是救援协调中心的首选地点,因为那里有可用的设施、合理的驾驶距离,不需要乘飞机,而且单一天气事件同时导致彭萨科拉海军航空站和杰克逊维尔海军航空站无法运行的可能性很小。彭萨科拉海军航空站已将 3561 号楼指定为我们的临时呼叫中心。RCC 将在 EROC 工作,该 EROC 为 RCC 指定了 8 个 NMCI 工作站和 8 个可用的电话连接。RCC 人员将携带笔记本电脑,并利用彭萨科拉现有的显示器以双显示器配置进行操作。EROC 有一个应急发电机。一旦电话线和 NMCI 连接经过测试并且工作人员准备就绪,NAS Jacksonville 的电话将被转接到电话号码 (850) 452-5294。留在 NAS Jacksonville 的人员将按照命令准备撤离。一旦紧急情况平息并且 RCC 人员被召回,RCC 将在 NAS Jacksonville 103 号楼重新开放。一旦有足够的工作人员返回工作岗位,RCC 将取消电话转接。在彭萨科拉海军航空站工作的人员将尽快返回 NAS Jacksonville。 RCC 还拥有基于每个隔间内连接的 DSN 电话的主动循环电话电路。这将在我们的 Avaya 电话系统服务中断或故障时使用。循环电路将按顺序从一个方块响到下一个方块。
图 S1。a 两个不同周期的实验设定电流(橙色和黄色线)和一阶导数(橙色和黄色符号)与电压的关系。设定点建立在电流导数最大值处(橙色和黄色方块)。b 两个示例周期的实验设定电流(橙色和黄色线)与电压的关系。这种新方法寻求两个连续点(橙色和黄色符号)中的最大电流增加,以确定设定点。c 两个示例周期的实验设定电流(橙色和黄色线)与电压的关系。该技术使用直线(虚线)连接达到顺从电流的点和第一个测量电流,最大距离标记设定电压。d 两个不同周期的实验复位电流(橙色和黄色线)和一阶电流导数(橙色和黄色符号)与电压的关系。通过确定最小电流导数来确定复位点。e 两个示例周期的实验复位电流(橙色和黄色线)与电压的关系。该技术寻求两个连续点中的最大电流减少,以确定复位点。 f 两个示例周期的实验复位电流(橙色和黄色线)与电压曲线。最大电流值被设定为复位点。 g 实验复位电流(橙色和黄色线)和一阶电流导数(符号)与电压曲线。导数的第一个负值点被设定为复位点。
驻军指挥官市政厅——2023 年 5 月 | 问答池停车场:问:根据居民手册,Aukamm 的停车位是先到先得。人们一直在竖起“为他们的建筑物预留”停车位的标志。这违反了驻军对 Aukamm 社区的规定。我希望解决这个问题,这些标志应该被取下,因为如果汽车在其中一个地方被拖走,驻军将赔偿被拖走汽车的人。答:指挥官在市政厅期间解决了这个问题。这个问题存在一些误解——居民手册已经过时,但正在重新修订。在 Aukamm,并非所有停车位都是先到先得。每个单独的住房单元都应该有专用的停车位。我们需要回去重新粉刷这些数字,我们已经开始了这个过程。一些区域的路边已经涂上了白色方块,并将添加单元编号。一些停车位是开放的(没有标记),客人先到先得。不允许放置个人标牌来标记居民的停车位。这不仅是未经授权的,而且标牌还会妨碍割草队在该区域割草。问:反馈:显然有些人无视行人进入人行横道的法律,我们有优先通行权!答:是的,根据 IAW AER 190-1,USAREUR-AF 内的所有设施都必须遵守当地交通法规。这也适用于设施上使用的标牌类型。但是,使用人行横道的个人也应发挥作用。他们也应该注意,不要妄下结论。他们也应该停下来,等待被认出,然后继续前行。问:有没有办法规范 Clay Kaserne 的停车?我注意到很少有人使用所需的停车盘,只是坐着等待车位,我经常看到员工从接待中心出来从车里取东西或开车过来休息。考虑到这些停车位只能停 1-2 个小时,难道所有员工都不应该使用停车场吗?我们能获得适当的权力来规范此事并提交停车罚单吗?这太荒谬了。
所提出的 VR 应用的特点是使用 AI 自然语言处理来阅读和理解书中的日语单词,并在 VR 眼镜中显示适当的图像。通过一款名为 Immersion VR Reader 的应用程序已经实现了在 VR 中阅读书籍的功能,该应用程序专为 Oculus GO (2) 提供。但是,这个应用程序存在一个问题。当我们开始开发本文提出的 VR 应用程序时,它仅支持英语。另一个原因是,还没有开发其他支持日语阅读理解的应用程序。作为回应,我们将注意力转向了 IBM 已经宣布的 Watson (3) 的使用。 Watson 的机器学习使用自然语言处理,具有理解文本的能力。在自然语言处理阶段,句子被分成几个单词,这个过程称为“分词”,然后每个单词被分配一个词性。此外,我们决定从中自动搜索名词,并将相应的搜索结果投影为VR。作为制作的第一步,我们将使用 Tone Analyzer 功能,这是 Watson 中可用的功能之一,可以提取阅读一段文本时感受到的情绪。此外,我们希望将获取到的情绪和对应的背景颜色投射到VR中。因此,本申请的特点是,利用Watson从文本中获得的情感数据,通过游戏引擎(Unity)获取,并构建相应的VR。这款应用程序的工作方式是,当你戴上 VR 眼镜时,空白处就会出现一个白色方块。然后,正在阅读的书的文本就会显示在空间的中心。接下来,系统自动搜索文本中的名词,并利用VR以360°视角投射与名词对应的图像和背景颜色。如果句子中除了名词之外还有您感兴趣的单词,您可以使用蓝牙遥控器手动选择它们。此外,用户还可以通过音调分析器阅读眼前书籍的全文,并根据自然语言处理的结果显示VR环境的背景颜色,从而通过声音表达场景的氛围。图像和颜色。这将实现。
338 Fader M 1 , Clarke-O'Neill S 2 , Cottenden A 2 1.伦敦大学学院/南安普顿大学,2.伦敦大学学院 皮肤屏障产品会阻碍失禁垫的吸收吗?研究假设/目的 皮肤屏障产品通常与吸收垫一起使用,以预防和治疗尿布皮炎。然而,垫制造商不鼓励使用它们,因为担心它们可能会阻碍尿液渗透垫,导致泄漏。一些屏障产品制造商声称他们的产品不会影响垫的性能,但目前还没有发表的研究,屏障霜对吸收垫的影响尚不清楚。本研究的目的是调查皮肤屏障产品对垫吸收性的影响。研究设计、材料和方法 设计:准临床实验室研究 方法: 设备:穿透装置(用于测量液体吸收到垫材料中的速度) 产品:三种常用的屏障产品: (1) Cavilon(聚合物溶液) (2) Sudocrem(锌基乳膏) (3) 软石蜡 八名志愿女性(年龄范围为 24-46 岁)测试了这三种屏障产品。每次测试时,将 75 毫米见方的屏障产品涂抹在前臂掌侧,如下所示:Cavilon(按照制造商的说明)、Sudocrem 和软石蜡以两种剂量涂抹(a)少量/推荐(0.1g/75 毫米见方)(b)大量(0.3g/75 毫米见方)——共进行五次测试。使用泡沫垫和微孔胶带将 75 毫米见方的一次性绒毛纸浆床垫材料贴片固定在已涂抹屏障产品的皮肤区域上。将对照贴片贴在另一只手臂上。贴片佩戴一小时。然后将贴片放入“穿透”装置中,测量 5ml 盐水的吸收速度。结果下表显示了使用不同皮肤屏障产品的绒毛纸浆床垫材料方块记录的穿透时间平均值(+ 95% 可信区间,用于实验平均值和对照平均值之间的差异)之间的比较。图 1 显示了从所有受试者和对照组记录的数据。对照组(所有测试) Cavilon Sudocrem 0.1g(保留)
338 Fader M 1 , Clarke-O'Neill S 2 , Cottenden A 2 1.伦敦大学学院/南安普顿大学,2.伦敦大学学院 皮肤屏障产品会阻碍失禁垫的吸收吗?研究假设/目的 皮肤屏障产品通常与吸收垫一起使用,以预防和治疗尿布皮炎。然而,垫制造商不鼓励使用它们,因为担心它们可能会阻碍尿液渗透垫,导致泄漏。一些屏障产品制造商声称他们的产品不会影响垫的性能,但目前还没有发表的研究,屏障霜对吸收垫的影响尚不清楚。本研究的目的是调查皮肤屏障产品对垫吸收性的影响。研究设计、材料和方法 设计:准临床实验室研究 方法: 设备:穿透装置(用于测量液体吸收到垫材料中的速度) 产品:三种常用的屏障产品: (1) Cavilon(聚合物溶液) (2) Sudocrem(锌基乳膏) (3) 软石蜡 八名志愿女性(年龄范围为 24-46 岁)测试了这三种屏障产品。每次测试时,将 75 毫米见方的屏障产品涂抹在前臂掌侧,如下所示:Cavilon(按照制造商的说明)、Sudocrem 和软石蜡以两种剂量涂抹(a)少量/推荐(0.1g/75 毫米见方)(b)大量(0.3g/75 毫米见方)——共进行五次测试。使用泡沫垫和微孔胶带将 75 毫米见方的一次性绒毛纸浆床垫材料贴片固定在已涂抹屏障产品的皮肤区域上。将对照贴片贴在另一只手臂上。贴片佩戴一小时。然后将贴片放入“穿透”装置中,测量 5ml 盐水的吸收速度。结果下表显示了使用不同皮肤屏障产品的绒毛纸浆床垫材料方块记录的穿透时间平均值(+ 95% 可信区间,用于实验平均值和对照平均值之间的差异)之间的比较。图 1 显示了从所有受试者和对照组记录的数据。对照组(所有测试) Cavilon Sudocrem 0.1g(保留)
脑机接口使神经科学家能够将特定的神经活动模式与特定的行为联系起来。因此,除了目前的临床应用外,脑机接口还可用作研究大脑学习和可塑性的神经机制的工具。数十年来使用此类脑机接口的研究表明,动物(非人类灵长类动物和啮齿动物)可以通过操作条件反射自我调节大脑各种运动相关结构的神经活动。在这里,我们要问的是,人类大脑是一个由超过 800 亿个神经元组成的复杂互连结构,它能否学会在最基本的层面——单个神经元——上自我控制。我们利用这个独特的机会记录了 11 名癫痫患者的单个单元,以探索边缘系统和其他与记忆相关的大脑结构中单个(直接)神经元的发放率是否可以受到意志控制。为此,我们开发了一个视觉神经反馈任务,训练参与者通过调节他们大脑中任意选择的神经元的活动来移动屏幕上的方块。值得注意的是,参与者能够有意识地调节这些以前未经研究的结构中的直接神经元的发放率。我们发现一部分参与者(学习者)能够在一次训练课程中提高他们的表现。成功的学习的特点是:(i)直接神经元的高度特异性调节(表现为发放率和爆发频率显著增加);(ii)直接神经元的活动与邻近神经元的活动同时去关联;(iii)直接神经元与局部 alpha/beta 频率振荡的稳健锁相,这可能为促进这种学习的潜在神经机制提供一些见解。记忆结构中神经元活动的意志控制可能为探索人类记忆的功能和可塑性提供新方法,而无需外部刺激。此外,这些大脑区域神经活动的自我调节可能为开发新型神经假体提供途径,用于治疗通常与这些大脑结构中的病理活动相关的神经系统疾病,例如药物难治性癫痫。
b 互斥,可以按任何顺序执行,但不能并发;在右侧,a 和 b 之间存在真正的并发,用 HDA 语义的实心方块表示。在交错语义中,两个网之间没有区别,两者都产生左侧的转换系统。van Glabbeek 在 [31] 中首次探讨了 Petri 网和 HDA 之间的关系,其中 HDA 被定义为带标签的前立方体集,其单元是不同维度的超立方体。最近,[13] 为 HDA 引入了一种基于事件的设置,将其单元定义为带标签事件的全序集。该框架导致了 HDA 理论的许多新发展 [4,5,14,16],因此我们在这里着手将 van Glabbeek 的翻译更新为这种基于事件的设置。Petri 网是一个强大的模型,可以表示无限系统,同时保留可达性 [25] 和可覆盖性 [23] 的可判定性。尽管 Petri 网具有表达能力,但它缺少一些表示程序执行所必需的特性。在 [17] 中,作者引入了抑制弧,当通过抑制弧连接到 t 的位置不为空时,它可以防止转换 t 触发。显然,这种构造允许实现零测试,这使得带有抑制弧的 Petri 网具有图灵能力。我们研究了带有抑制弧的 Petri 网的并发语义,表明 [21] 的后验语义再次产生了 HDA。然而,对于更自由的先验语义(再次参见 [21]),我们需要引入部分 HDA,其中一些单元可能缺失,模仿现在禁止某些并发执行序列化的事实。我们进一步将我们的工作扩展到 [11] 的广义自修改网,将它们的并发语义定义为 ST 自动机,而 ST 自动机本身又概括了部分 HDA。我们开发了一个原型工具,它实现了从 Petri 网到 HDA 的转换以及从 PNI 到部分 HDA 的转换。4 我们的实现能够以模块化方式处理标准、加权和抑制弧。本文的结构如下。我们在第 2 和第 3 节开始回顾 HDA 和 Petri 网,重点介绍它们的并发语义,这种语义允许多个转换同时触发。以下各节介绍了我们的适当贡献。在第 4 节中,我们介绍了基于 [31] 的从 Petri 网到 HDA 的转换。为了克服这样构建的 HDA 的对称性,第 5 节引入了事件顺序,避免了构造中的阶乘爆炸。我们还给出了几个例子来说明 HDA 语义中的细节。然后,我们在第 6 节中考虑了具有抑制弧的 Petri 网(后验和先验语义),在第 7 节中考虑了广义自修改网。第 8 节介绍了我们的实现。
图 1. 电动汽车充电生态系统............................................................................................................. 4 图 2. 公共 EVSE 端口按充电水平划分的季度增长情况。...................................................... 7 图 3. 来自 DOE 的 AFDC 替代燃料站定位器的公共 DCFC 电动汽车充电位置。详细的区域地图见附录 D。...................................................... 8 图 4. 公共 DCFC 端口按功率输出划分的季度增长情况。...................................................... 9 图 5. 国家充电基础设施需求的概念性新图解。...................................................... 11 图 6. 国家公路系统高速公路总英里数与指定为 AFC 的总英里数的比较 ............................................................................................. 19 图 7. 第 1-6 轮指定的 AFC,其中现有 DCFC 站符合 NEVI 距离、端口和功率要求,显示为单个黑点,弱势社区以灰色阴影表示。详细的区域地图见附录 E。...................................................................................................................................... 20 图 8. AFC 地图描绘了网络中的间隙,其中车站相距超过 50 英里和/或距离走廊超过 1 英里,和/或现有车站不满足四端口和 150 千瓦功率要求。请注意,此地图还反映了已批准的距离要求例外情况(有关更多信息,请参阅自由裁量例外)。............................................................................................................. 22 图 9. 符合 NEVI 距离、端口和功率要求的 AFC 和现有 DCFC 车站以及拟建车站的地图。车站分为三类:现有车站(黑点)、潜在的新车站(橙色三角形)和现有车站的潜在升级车站(绿色方块)。未提供足够数据用于制图目的的州以灰色阴影表示。详细的区域地图见附录 F。...................................................................................................................... 23 图 10. 2022 财年和 2023 财年 NEVI 公式计划分配给各州 AFC 总预计建设成本的全国比较,突出显示一些州在建成 AFC 后将有大量剩余资金部署在州内的其他道路和地点。25 图 11. 各州批准的自由裁量例外位置的地图 ............................................................................................. 27 图 12. 按类型提交的例外请求的细分以及由此产生的批准决定 ............................................................................................. 28 图 13. 按原因提交的例外请求百分比。各州在提交每个申请时可以选择多个例外原因。 ...... 29 图 14. 阿肯色州电动汽车基础设施部署计划 .............................................................. 31 图 15. 肯塔基州 NEVI 部署计划中的利益相关者参与生态系统 .............................................. 33 图 16. 华盛顿特区 NEVI 部署计划中的部署策略 ...................................................................... 35 图 17. 宾夕法尼亚州 NEVI 部署计划中按资金周期分阶段部署方法的示例 ............................................................................................................. 36 图 18. 一些州在电动汽车充电正义 40 地图中补充了州定义或当地指标,包括加利福尼亚州和新泽西州的 NEVI 部署计划 ............................................................................................. 39
图 1. 通过靶向 HER2 阳性细胞的 SSHEL 递送阿霉素可减轻小鼠肿瘤异种移植模型中的肿瘤负担。 (A) SSHEL 粒子组装示意图。 1 µm 直径的介孔二氧化硅珠 (灰色,SiO 2 ) 装载货物 (阿霉素,红色),然后将脂质双层 (磷脂酰胆碱) 应用于表面 (黄色) 以创建货物包裹的球形支撑脂质双层 (SSLB)。 然后将 SSLB 与 SpoVM 肽 (蓝色) 和 SpoIVA 蛋白 (绿色) 和 ATP 一起孵育以促进 SpoIVA 聚合。 插图:SpoIVA 含有与反式环辛烯 (TCO) 结合的工程 Cys。与同源点击化学分子四嗪结合的抗 HER2 亲和体 (蓝色星号) 孵育会形成共价二氢哒嗪键,从而导致亲和体显示在 SSHEL 表面。(B) 显示用 Alexa Fluor 488 (AF488) 荧光染料标记的共价连接亲和体的 SSHEL 的荧光显微照片。左图:使用 DIC 可视化的 SSHEL;右图:来自 AF488 的荧光。(C) 使用流式细胞术测量显示抗 HER2 AF488 (绿色) 的 SSHEL 的荧光,并与显示已知数量的等效可溶性荧光染料分子 (MESF) 的珠子产生的荧光进行比较,以计算每个 SSHEL 颗粒显示的抗 HER2 AF488 的数量。(D) 用 SpoIVA AF488 制成的载阿霉素 SSHEL 的荧光显微照片。左上:DIC;右上:SpoIVA AF488 的荧光;左下:阿霉素的荧光;右下:叠加,阿霉素和 SpoIVA AF488 。B 和 D 中的比例尺:1 µm。(EF)无胸腺裸鼠皮下(sc)接种 SKOV3 HER2 阳性卵巢癌细胞。当肿瘤体积达到 ~100 mm 3 时,在异种移植后的几天内,用 PBS(黑色圆圈)、(E) 60 µg 或 (F) 120 µg 阿霉素(红色方块)、含有等效剂量阿霉素的载阿霉素 SSHEL(绿色三角形)或不含货物的等效数量 SSHEL(蓝色倒三角形)对小鼠进行静脉内 (iv) 治疗,箭头所示(试验 1 为 18、21、25、28、32、35、39、43、46、50、54;试验 2 为 13、16、20、23、27、30、34、37),并测量肿瘤体积。数据点代表平均值;误差为 SD;n=7 只小鼠。P 值:*<.05;****<.001。 (GH) 分别在 (G) 第 60 天、(H) 第 41 天 (H,左) 或第 47 天 (H,右) 从 (EF) 小鼠体内切除的肿瘤。红色星号:溃疡肿瘤;蓝色星号:肿瘤 >1500 mm 3 ;橙色星号:从体重减轻 >10% 的小鼠体内切除的肿瘤。比例尺:10 mm。