蛋白质的展开形式是氨基酸的线性序列。蛋白质结构预测试图找到给定蛋白质的天然构象,这在药物和疫苗开发中具有潜在的应用。经典的蛋白质结构预测是一个 NP 完全的、未解的计算问题。然而,量子计算有望提高经典算法的性能。在这里,我们在二维方格上的疏水-亲水模型中开发了一种量子算法,用于解决任何长度为 N 的氨基酸序列的问题,其速度比经典算法快二倍。这种加速是使用 Grover 的量子搜索算法实现的。该算法可用于任意长度的氨基酸序列。它包括三个阶段:(1)准备一个编码所有可能的 2 2 ( N − 1 ) 种构象的叠加态,(2)并行计算每种可能构象的坐标和能量,以及(3)找到具有最小能量的构象。空间上的渐近复杂度为 O ( N 3 ) ,而与经典算法相比,获得的加速比是二次的。我们已使用 Qiskit SDK 在 IBM Quantum 的 qasm 模拟器上成功模拟了该算法。此外,我们还通过计算找到正确构象的理论概率进一步证实了结果的正确性。
在医学影像诊断中,经常出现这样的问题:在获得初始概览图像后,第二步必须“仔细观察”特定的解剖目标区域,即h.想要以更高的分辨率拍摄图像。传统的磁共振成像 (MRI) 在这里有其局限性,因为根据其原理,一旦物体被通常的 MR 高频脉冲激发,就必须对其进行完全扫描。因此,只有以高分辨率扫描整个受刺激的身体区域,才有可能实现更高的细节分辨率,但由于测量时间的限制,这通常是不切实际的。因此,8.1 医学测量技术系正在开发空间选择性激励 (SSE) 方法,该方法允许激励任意形状(尤其是空间有限)的目标体积。这一过程现已得到进一步发展,因此也可以在体内展示具有良好图像质量的真正“变焦成像”。特别重要的是对来自目标体积外部的所有激励的稳健抑制。图 1 显示了在直径为 20 厘米的均质凝胶圆柱体中激发边长为 8 厘米的扁平方形圆盘的两种不同方法,其中目标图案通过幅度编码一次,通过相位编码一次复杂磁化强度 - en。您可以看到,“相位调制方法”(FM-SSE,图中左侧)提供了更清晰的明暗过渡,并且更好地抑制了来自目标方格外部的信号。
摘要:金属 - 有机框架(MOF)在二十年前开始出现,导致在剑桥结构数据库(CSD)中沉积了120 000个类似MOF的结构(和计数)。拓扑分析是了解周期性MOF材料的关键步骤,通过简化对完整化学结构的连通性的简化来深入了解这些晶体的设计和合成。虽然一些最普遍的拓扑,例如面部中心的立方(FCU),方格(SQL)和钻石(DIA),但很简单,可以轻松地分配给结构,但MOF是由复杂的构建块构建的,是由复杂的构建块建造的,具有多个不同对称性的节点,具有多个具有不同对称性的节点,因此很难表征拓扑配置。在这些复杂的结构中,表示节点和链接器的定义模糊,尤其是对于在化学术语中不立即明显的情况下,表示形式很容易分歧。目前,研究人员可以选择使用TopoSpro,MoFID和Crystalnets等软件来帮助将拓扑描述分配给新的和现有的MOF。这些软件包很容易获得,并且经常用于将原始MOF结构简化为其基本连接表示形式,然后算法将这些凝结表示形式匹配到基础数学网络的数据库。这些方法通常需要使用内置债券分配算法以及简化和匹配规则。从这个角度来看,我们讨论了拓扑在MOF领域,这些软件包实施的方法和技术及其可用性和局限性的重要性,并查看其在MOF社区中的吸收。
量子算法基于量子力学原理,有望解决现有最佳经典算法无法解决的问题。实现这种加速的一个重要部分是量子查询的实现,即将数据读入量子计算机可以处理的形式。量子随机存取存储器 (QRAM) 是一种很有前途的量子查询架构。然而,在实践中实现 QRAM 带来了重大挑战,包括查询延迟、内存容量和容错性。在本文中,我们提出了第一个 QRAM 端到端系统架构。首先,我们介绍了一种新型 QRAM,它混合了两种现有的实现,并在空间(量子位数)和时间(电路深度)上实现了渐近优越的扩展。与经典虚拟内存一样,我们的构造允许查询比硬件中实际可用的虚拟地址空间更大的虚拟地址空间。其次,我们提出了一个编译框架,用于在实际硬件上合成、映射和调度 QRAM 电路。我们首次展示了如何将大规模 QRAM 嵌入二维欧几里得空间(例如二维方格布局),同时将路由开销降至最低。第三,我们展示了如何利用所提出的 QRAM 固有的偏置噪声弹性,在噪声中型量子 (NISQ) 或容错量子计算 (FTQC) 硬件上实现。最后,我们通过经典模拟和量子硬件实验对这些结果进行了数值验证。我们新颖的基于 Feynman 路径的模拟器可以高效地模拟比以前更大规模的噪声 QRAM 电路。总的来说,我们的结果概述了实现实用 QRAM 所需的软件和硬件控制集。
图 1 EMT 过程中的细胞事件。正常情况下,上皮细胞以单细胞层或多层形式存在,并通过特殊的细胞间连接相互通讯,包括桥粒、亚顶端紧密连接、黏附连接和分散的间隙连接。一旦上皮细胞受损,上皮细胞 - 细胞连接就会溶解,上皮细胞失去顶端 - 基底极性并获得前后极性。此外,细胞骨架结构会重组,E-钙粘蛋白的表达被 N-钙粘蛋白的表达取代,这有助于细胞运动和侵袭性。然后,基底膜会溶解。在胚胎发生过程中,上皮和间充质细胞通过 EMT 和 MET 相互转化,这种转化被称为 I 型 EMT,对胚胎发育和器官形成至关重要。在 II 型 EMT 中,间充质样细胞随后转化为肌成纤维细胞,产生过量胶原蛋白,导致纤维化。在 III 型 EMT 中,间充质样细胞随循环系统迁移到次要位置,迁移细胞通过 MET 形成继发性肿瘤。绿色方格表示三种 EMT 类型中的共同过程,可以针对该过程治疗纤维化和肿瘤。EMT,上皮间充质转化;MET,间充质上皮转化 [彩色图可在 wileyonlinelibrary.com 上查看]
沉重的费米昂超导体是一种引人入胜的材料类。这些非常规的超导体来自重型准颗粒,这些粒子源自局部的F-电子植物,这些局部液体液体液化为费米海。最近,该材料类别的两个新成员UTE 2和CERH 2为2,引起了极大的兴趣。ute 2是Piers Coleman和Tamaghna Hazra [1]的评论的重点。对CERH 2的兴趣是2个源于其频道温度 - 磁场相图,沿着该四方材料的C轴施加磁场时(见图1)[2]。此相图具有两个无表特征。第一个是在两个超导阶段(称为SC1和SC2)之间引起的一阶诱导一阶转变。第二个是H C 2 /T C的记录高值,其中H C 2是上临界场,T C是超导过渡温度。该记录值表明对超导性的自然保护对C轴场。观察到的行为归因于晶体结构。每个单位细胞有两个不等的CE原子,并且两个CE原子都没有反转对称性。但是,两个不等的CE原子是彼此的反转对称伙伴,因此存在全局反转对称性。不相等的CE原子每个形成平方晶格。超导相图的解释是,在每个CE方格晶格层中,有局部相互作用会引起自旋单向超导状态(例如S-波或D -Wave)[2,3]。如图2,两个CE层之间的反转中心自然允许两个超导状态:均匀的奇偶校验状态
基于测量的量子计算是一种量子计算方法,其中对最初准备的纠缠资源状态执行自适应测量 [1,2]。在本文中,我们研究了基于测量的量子计算在一类资源状态(称为图状态)上的调度。具体而言,我们建立了测量调度和图的路径分解之间的等价关系。先前的工作通过设计特定于计算的图状态研究了基于测量的量子计算的优化 [3-9]。图状态的选择在量子比特和纠缠门的数量方面具有自然相关成本。然而,图状态的纠缠结构意味着整个状态可能不需要同时准备 [10]。因此,我们根据同时活跃的量子比特的数量来考虑给定图状态的空间成本。具体而言,我们只考虑对固定图状态的测量调度进行优化。我们的结果表明,基于测量的量子计算的空间成本与图的路径宽度成比例。此外,我们的分析表明,近似图的空间成本通常是 NP 难的。对于具有有界空间成本的图,我们建立了一种计算最佳测量计划的有效算法。我们探讨了我们的结果对容错量子计算实现的影响。我们认为,低度图(仅促进最近邻交互,例如方格)是减少空间资源的合适选择。本文的结构如下。在第二部分中,我们介绍了我们工作所需的框架。然后,在第三部分中,我们证明了我们的主要结果,它建立了测量计划和路径之间的等价性
向 AHS 报告并受其管理的站点。其中包括但不限于公共卫生中心、AHS 工作场所健康与安全以及急症护理药房。 审计 包括定量和定性分析的独立评估。 吧台冰箱 用于储藏食物的非实验室级小型单门冰箱。 图表记录器 一种每天 24 小时不间断用墨水笔在方格纸上标记冰箱温度的设备。 冷链 指在疫苗运输、储存和处理过程中保持最佳温度和光照条件的过程。这始于制造商,终于将疫苗注射给客户。 冷链超限 疫苗暴露在光线和/或产品专论中规定的建议范围以外的温度下。 冷链监测器 一种在疫苗运输、储存和处理过程中监测环境条件的设备,从制造点直到将疫苗注射给客户。它们是显示温度何时超过或低于建议的 +2.0ºC 至 +8.0ºC 的指标。例如,TempTale®、LogTag™ 社区提供者 社区提供者是被授权在社区提供免疫接种且不直接受雇于 AHS 的个人或个人团体。社区提供者可能包括:医疗诊所、私人职业健康服务和高等教育机构。社区提供者可以从 AHS 或与 Alberta Health 签约的批发分销商(例如 Accuristix)获得疫苗。一些社区提供者可能从 AHS 和批发分销商处获得疫苗。连续温度记录设备
非侵入性抽样是濒危和稀有动物遗传研究的最真实的技术之一。在基于非侵入性样本的本研究中,我们通过使用细胞色素B(Cyt B)和细胞色素C氧化酶亚基I(COI)通用线粒体底漆给出了蛇类物种的初步遗传文献,来自印度印度uttarakhand(英国)。我们从印度北阿坎德邦的四个不同位置取样了n = 11种未知蛇物种的皮肤。基因组DNA分离,PCR扩增和收集样品的测序的成功率为100%。之后,在遗传学分析中,在11个样品中,有8个与最不关心的Ver3.1大鼠蛇物种相匹配,两个样品与方格的Keelback蛇配对,一个样品与印度眼镜蛇匹配。随后观察到149(Cyt B)和207(COI)特异性固定SNP。在三种蛇种中,基于两个线粒体基因座获得的种间序列差异也显示出北阿坎德邦蛇种群的较高可变性。基于非侵入性遗传抽样方法的当前研究表明了其在生物多样性保护中的重要性,尤其是那些处于濒危和严重濒危类别下的物种。将来有助于物种管理,种群,基于进化的研究和野生动植物法医的遗传参考数据库。关键词:线粒体DNA和保护,非侵入性遗传采样,蛇,脱落皮肤
摘要 Jacobsen, RM、Davey, M.、Endrestøl, A.、Fossøy, F. 和 Åström, J. 2024. 早期发现新的陆地外来物种。 2023 年昆虫和蛛形纲动物 DNA 条形码结果。NINA 数据报告 1。挪威自然研究所。 https://hdl.handle.net/11250/3165181 自 2018 年起,挪威自然研究所每年对挪威东南部的 25 条路线进行监测,主要目的是检测挪威自然界中早期建立阶段的新外来物种。每个方格中都绘制了陆生维管植物和节肢动物(主要是昆虫,但也有一些蛛形纲动物、少量跳虫和其他节肢动物)。这里只报告了 2023 年节肢动物调查的结果。每个方格都用一个病虫害陷阱收集昆虫和蜘蛛,病虫害陷阱于 5 月设置,9 月拆除,清空 4 次。这样一来,一共得到了 100 个疾病陷阱样本。节肢动物是通过 DNA 条形码来识别的。通过裂解陷阱材料提取 DNA,然后在 PCR 中扩增线粒体基因 COI,然后在 Illumina NovaSeq 平台上进行测序。对得到的序列进行过滤、纠错和质量保证,并生成 ASV(扩增子序列变体)。 ASvene 使用程序 RDP-Classifier 进行分类,它是一个“贝叶斯概率估计器”。该程序使用 NINA 开发的经过训练的数据库,根据参考序列将 ASV 分类为物种。 ASV 和分类的质量有保证,并且对物种分类给出了置信度评估。仅报告物种置信度评估为高或中等的 ASV。然后将该物种名单与挪威外来物种名单、挪威物种名称数据库、GBIF 的全球出现数据和四个欧洲外来物种名单进行核对。然后将物种发现分为以下类别; (1) 挪威物种;出现在物种名称数据库中,但不在挪威外来物种名单中,(2)已知外来物种;出现在物种名称数据库和挪威外来物种名单中,(3)芬诺斯坎迪亚物种;在物种名称数据库中未出现,但已在芬诺斯坎底亚被发现;(4) 可能是新的外来物种;没有出现在物种名称数据库中,也没有在芬诺斯坎迪亚检测到,或者没有在芬诺斯坎迪亚或欧洲被登记为外来物种。在 2023 年野外采集的病虫害陷阱样本中,检测到了 18 种已知外来物种、70 种潜在的新外来物种和 160 种可能未登记的挪威物种(芬诺斯坎迪亚物种)。在已知的外来物种中,有两种生态风险非常高的物种(胡萝卜织布虫和七彩瓢虫),以及两种目前在挪威自然界中没有独立繁殖种群的门把手物种(叶甲虫Deraeocoris flavilinea和寄生蜂Dacnusa sibirica)。在70种潜在新外来物种中,两大优势物种组分别为蝇类(双翅目)38种和黄蜂(膜翅目)21种。对于使用 DNA 宏条形码检测到的潜在新外来物种,应通过在样本中找到检测到该物种的个体并通过形态学鉴定确认物种判定来进行验证。然后,应该对新的外来物种进行风险评估,然后才能评估是否需要采取控制或消灭措施的快速反应。 Rannveig M. Jacobsen (rannveig.Jacobsen@nina.no)、Anders Endrestøl、NINA Oslo、Sognsveien 68、0855 Oslo Marie Davey、Frode Fossøy、Jens Åström、NINA Trondheim、Høgskoleringen 9、7034 Trondheim