抽象的心脏病和机器学习是两个不同的词,其中一个与医学领域有关,另一个与人工智能有关。在医疗中,大多数人都面临着心脏病的问题,机器学习正在发展计算机科学领域。心脏病被称为心脏病,它提供了更多的数据或信息,应收集它以提供患者的报告,并且机器学习还需要用于预测和解决问题的数据。机器学习技术用于预测心脏病的预测,在这种预测中,它以更少的计算时间和更高的准确性来促进其健康。心脏病预测需要大量的数据来预测,在云计算中,我们也有更多数据,并且在云中可用的数据很难分析。因此,我们使用机器学习算法或技术来预测心脏病,并且以相似的方式应用了这些算法或技术来预测或分析云中可用的数据。在本文中,我们将使用称为Backpropagation算法的机器学习算法,后来我们以后使用优化算法。反向传播算法涉及人工神经网络。反向传播是一种方法,用于计算一批数据后每个神经元的误差贡献(在图像识别,多个图像中)。这是由包围优化算法使用的,以调整每个神经元的重量,从而完成该情况的学习过程。机器学习算法和技术用于识别人类风险问题的强度,它可以帮助患者采取安全措施,以挽救患者的生命。关键字:机器学习,云计算,心脏,反向传播,优化
海洋具有大量的微生物多样性,在海水,海洋沉积物和海洋生物中广泛普遍存在。与传统自然产品研究中探索的地面资源相反,海洋微生物的栖息地明显独特。放线菌是继发代谢产物的重要来源,包括抗生素和其他有效的天然产物,例如链霉素和四环素。他们在诸如致病细菌感染等明显疾病的临床治疗中起着关键作用。然而,广泛使用抗生素导致抗药性细菌的种类和数量急剧增加,尤其是耐多药(MDR)和广泛的耐药(XDR)细菌,在临床环境中,对人类生存构成严重威胁。因此,即时需要发现结构新颖的抗菌天然产品并开发新的抗生素。这项迷你评论总结了来自2024年出版的海洋放线菌的45种新型抗菌天然产品。这些产品,包括聚酮化合物,生物碱,大酰胺类和肽,在其结构和生物活性方面突出显示。本文的目的是为新型抗生素的研究和开发提供宝贵的见解。
1在案卷上提交的通知,原告断言他打算在恶意起诉索赔中列举两名被告。请参阅文档。#65-66。2“第四修正案禁止'不合理的搜索和癫痫发作。'” Ganek诉Leibowitz,874 F.3d 73,81(2d Cir。2017)(引用美国宪法修正。iv)。“为了使癫痫发作合理,通常必须由可能的原因来支持。” Marav。Rilling,921 F.3d 48,69(2d Cir。2019)。“可能的原因‘在官员有知识或合理值得信赖的事实和情况的信息时,就存在逮捕,这足以保证一个合理谨慎的人,因为人们相信要被捕的人已承诺或正在犯罪。'” Martel诉S. Windsor镇,562 F. Supp。2d 353,358(D。Conn。2008),FART,345 FED。app'x 663(2d Cir。2009)。2009)。
多囊卵巢综合征(PCOS)是最常见的内分泌疾病,影响了全球多达15%的生殖年龄妇女(1)。这种高度遗传,复杂的遗传疾病的特征是生殖和代谢异常的可变星座,导致了年轻女性中最多的不孕症和2型糖尿病(T2D)的大多数病例(1)。Clinically, the National Institutes of Health (NIH) criteria ( 2 ) and the Rotterdam criteria ( 3 , 4 ), the commonly used diagnostic criteria for PCOS, are based on the presence of at least two of three phenotypes: hyperandrogenism (HA), chronic oligo/anovulation or ovulatory dysfunction (OD), and polycystic ovarian morphology (PCOM) ( 2 – 4)。值得注意的是,目前在2023年发表的鹿特丹标准中描述了PCOS患者的选择,该标准还包括升高的睾丸激素和免费睾丸激素水平,除了先前引用的标准外。尽管PCOS的诊断标准中存在这些大量的病毒和显着进步,但考虑到PCOS病因的基本机制仍然很少了解,PCOS的患病率仍然上升(1)。除了影响生育能力之外,患有PCOS的个体的可能性升高了肥胖,胰岛素抵抗和代谢性疾病的可能性升高,所有这些都与线粒体功能障碍相互联系(6)。线粒体是负责能量产生的细胞器,是细胞ROS(活性氧)的主要来源,因此可能导致氧化应激损伤。到目前为止,PCOS患者中发现了33个相关的MTDNA突变。因此,线粒体生成的氧气已被认为是PCOS病因的关键因素(6)。有趣的是,PCOS患者已鉴定出mtDNA中的突变,即使它们在PCOS中的病因作用需要进一步研究,它们可能在PCOS病因和发病机理中起重要作用。在这些mtDNA突变中,大多数突变(在33个中的20个)被鉴定在D-Loop调节区域中,这表明
本文提出了针对非BOLONOMIC车辆的稳定跟踪控制规则。通过使用Liapunov函数来证明该规则的稳定性。对车辆的输入是参考姿势(x,y ,, 8)'和参考速度(v,ar)'。本文的主要目的是提出一个控制规则,以找到合理的目标线性和旋转速度(v,a)'。线性化系统的微分方程对于确定对小干扰的关键倾倒参数很有用。为了避免任何滑倒,引入了速度/加速度限制方案。有或没有速度/加速度限制器的几个合理结果。本文提出的控制规则和限制方法是与机器人无关的,因此可以应用于具有死亡算力能力的各种移动机器人。此方法是在自动移动机器人Yamabico-11上实现的。获得的实验结果接近速度/加速度限制器的结果。
Artem Shmatko 1,3,*,Patel 1:4,5,6,*,Ramin Rahmanzade 4.5,红色4.5,Luke Friedrich Schrimmpf 4.5.7,Big 4.5,Henri Bogumil 4.5,Sybren L.N.5月8日,马丁·西尔·詹妮克(Martin Sill Jannik)11,13,大卫·鲁斯(David Reuss),克里斯蒂安·埃罗德·孟德(Christian Herold-Mende)9,技能M琼斯6:14,Stefan M. Pfister,Arnault Esparia-Sack 31,32,Pascal Varlet 31,32,Brandner 33,Xiangzhi Bai 2,Andreas von Deimling 4.5,
湿度是空气中的水蒸气量。如果空气中有很多水蒸气,则湿度将很高。湿度越高,外面感觉越湿。相对湿度是实际上空气中的水蒸气的量,其表示为空气可以在相同温度下容纳的最大水蒸气量的百分比。在寒冷的-10摄氏度(华氏14度)上考虑空气。在该温度下,空气最多可以容纳每立方米的2.2克水。因此,如果摄入-10摄氏度时,每立方米有2.2克水,我们的相对湿度很不舒服。如果在-10摄氏度的空气中有1.1克水,我们的相对湿度为50%。
他获得了博士学位。学位于2010年,在:化学技术与冶金学大学(UCTM) - 索菲亚(Bulgaria)的硅酸盐技术,结合材料和高温可融合的非金属材料领域的领域。 他的博士学位论文的标题为:“纳米复合材料混合涂料的调查和评估以保护腐蚀”。 他获得了硕士学位 在2004年获得UCTM – Sofia的冶金学和材料科学学院的化学工程学位,具有硅酸盐材料的专业,其论文的标题是:详细和表征带有perovskite结构的红色陶瓷色素,在Uji - Castellon(Spain)也呈现。 他的学士学位 论文于2002年在同一所大学发表,并致力于:“通过固定的光敏剂对饮料水进行灭菌”。 如今,他是8本书的作者,以及70多个出版物(H-Index 13和660引用),与先进的腐蚀保护系统,陶瓷材料回收,喷雾热解合成和陶瓷传感器元素有关。他获得了博士学位。学位于2010年,在:化学技术与冶金学大学(UCTM) - 索菲亚(Bulgaria)的硅酸盐技术,结合材料和高温可融合的非金属材料领域的领域。他的博士学位论文的标题为:“纳米复合材料混合涂料的调查和评估以保护腐蚀”。他获得了硕士学位在2004年获得UCTM – Sofia的冶金学和材料科学学院的化学工程学位,具有硅酸盐材料的专业,其论文的标题是:详细和表征带有perovskite结构的红色陶瓷色素,在Uji - Castellon(Spain)也呈现。 他的学士学位 论文于2002年在同一所大学发表,并致力于:“通过固定的光敏剂对饮料水进行灭菌”。 如今,他是8本书的作者,以及70多个出版物(H-Index 13和660引用),与先进的腐蚀保护系统,陶瓷材料回收,喷雾热解合成和陶瓷传感器元素有关。在2004年获得UCTM – Sofia的冶金学和材料科学学院的化学工程学位,具有硅酸盐材料的专业,其论文的标题是:详细和表征带有perovskite结构的红色陶瓷色素,在Uji - Castellon(Spain)也呈现。他的学士学位论文于2002年在同一所大学发表,并致力于:“通过固定的光敏剂对饮料水进行灭菌”。如今,他是8本书的作者,以及70多个出版物(H-Index 13和660引用),与先进的腐蚀保护系统,陶瓷材料回收,喷雾热解合成和陶瓷传感器元素有关。
甘蔗是世界上最重要的糖和能源作物。在甘蔗育种期间,技术是需求,方法是手段。我们知道,种子是甘蔗产业发展的基石。Over the past century, with the advancement of technology and the expansion of methods, sugarcane breeding has continued to improve, and sugarcane production has realized a leaping growth, providing a large amount of essential sugar and clean energy for the long-term mankind development, especially in the face of the future threats of world population explosion, reduction of available arable land, and various biotic and abiotic stresses.Moreover, due to narrow genetic foundation, serious varietal degradation, lack of breakthrough varieties, as well as long breeding cycle and low probability of gene polymerization, it is particularly important to realize the leapfrog development of sugarcane breeding by seizing the opportunity for the emerging Breeding 4.0, and making full use of modern biotechnology including but not limited to whole genome selection, transgene, gene editing, and synthetic生物学,结合遥感和深度学习等信息技术。鉴于此,我们从技术和方法的角度专注于甘蔗育种,回顾了主要历史,指出了当前的状态和挑战,并为智能育种前景提供了合理的前景。
本文论文讨论了这种新的DNABERT模型,并解决了它对生物学和健康产生影响的程度。在这里,与当前现有模型相比,DNABERT是否是革命性的。通过比较先前研究中预测模型的准确性与DNABERT的准确性,我得出的结论是,DNABERT可以在剪接位点预测上获得出色的性能,并且可以获得最高的准确性,但无法获得启动子预测的出色性能。因此,我的目的是确定DNABERT的工作原理,以便可以获得可能可以用于进一步优化和自定义的理解。因此,分析了DNABERT的K-MER令牌化方法和字节对编码。这是通过采用Ji等人的DNABERT的所述方法来进行的。(2021)和Zhou等人的DNABERT-2。(2023)。从此分析中可以得出结论,两种方法都比现有的DNA/RNA预测方法更好,但是BPE是最有前途的。之后,使用DNABERT(DNABERT-PROM)重点介绍了启动子预测,以清楚地了解其过程以及如何进行预培训。为了获得此信息,Ji等人的DNABERT-PROM方法的描述。(2021)进行了调整。在这里,可以确定的是,使用具有TATA-Box存在或不存在的远端启动子,对DNABERT-PROM进行了培训,以预测Homo Sapiens。此外,使用EPDNEW数据库获取启动子的数据。为此,Ji等人的DNABERT的描述特性。在分析了DNABERT-PROM之后,我得出的结论是,它是一个高效的模型,可以预测Homo Sapiens中的启动子。最后,我选择提供更广泛的DNABERT观点,以研究如何在生物学和健康领域中应用。(2021)进行了调整,并将其与生物学和健康中的当前限制进行了比较。在这里,我得出的结论是,DNABERT是生物学和健康中转录调节预测的最有前途的模型,因为它可以解决上下文所需的信息。我得出的结论是,DNABERT也应该是执行其他类型的DNA/RNA预测的“第一选择”方法,尽管它们的用法绝不能替代研究和诊断中的决策。尽管DNABERT已经是一个非常充分的预测模型,但仍需要进一步的优化和自定义来扩大其对生物学和健康中顺序预测的贡献。
