课程背景 统计力学解释热力学并能够根据分子计算材料特性。 当热力学刚刚发展起来时,人们并不知道物质是由分子组成的!因此,热力学定律的起源也是未知的。 (1) 热力学并没有告诉我们定义材料的状态函数是什么,E(S,V,N) 还是 F(T,V,N) 还是 G(T,P,N) 还是 H(S,P,N) 等。这些函数是热力学定律的输入数据,必须针对每种材料进行测量。我们不能使用热力学来计算这些函数。 (2) 热力学也没有基本的微观基础——它基于经验假设。第二定律和熵特性的存在基于经验假设,通常是“热量不会自发地从一个物体流向另一个更热的物体。”为什么这是真的?热力学无法回答这个问题。统计力学给出了答案,而且非常简单。1874 年,奥地利物理学家路德维希·玻尔兹曼 (Ludwig Boltzmann) 提出了著名的熵假说,将宏观(热力学)世界与微观世界联系起来:𝑆= 𝑘 𝐵 𝑙𝑛 Γ 。其中 Γ 是可能状态的数量(与约束条件一致),𝑘 𝐵 是玻尔兹曼常数。因此,我们所要做的就是计算分子可能处于多少种状态,这就可以得出熵(从中可以得到所有其他热力学函数,如 F、G、H、Ω )。因此,如果分子是已知的(因此它们的相互作用也是已知的,等等),那么就可以得到所有的热力学函数,并且可以预测所有材料在不同过程中的性质和行为。第二定律 ΔS 宇宙 > 0 是玻尔兹曼假设的必然结果,也是合乎逻辑的。很明显,这一定律完全是材料分子性质的结果。它解释了时间之箭,这是牛顿和量子力学基本自然定律中缺失的,这些定律表现出 t→-t 不变性(想象一下台球桌上两个球的碰撞——如果你倒着播放这部电影,你不会知道,因为牛顿定律仍然适用)。基于分子的工程设计。因此,统计力学提供了微观和宏观、分子世界和材料世界之间的联系。因此,它为现代分子工程时代打开了大门,这是化学工程的现在和未来的核心。统计力学使我们能够设计分子(甚至构建全新的分子,如聚合物),这些分子将构成具有所需特性的新材料,构建利用分子应用于传感和其他新技术的纳米级设备,或了解活细胞中的分子机制,从而指导疾病的治疗和预防。统计分析的计算技术。当然,统计力学是关于统计学。它是统计分析的科学,其概念和工具旨在分析和理解涉及大量变量的复杂随机过程。当今用于解决涉及大量变量的统计问题的计算方法库主要诞生于统计力学领域。如今,这些方法不仅用于分子系统的研究,还用于从大脑神经回路到人工智能再到数据科学的各种应用。