a)强度调节器(P) - 调节强度(功率P),分别针对偏光激光的振幅。强度调节器(P)将强度各自将激光光振幅变化。强度调制器是一种通用激光调节器,其中包括输出偏振器。b)相调节器(PHAS) - 调节偏光激光的相位。相调节器(PHAS)改变了线性极化激光的相。这意味着如果施加电压,则穿过相调节器的线性极化光将较慢(如果施加半波电压,则半波或半个周期)。c)通用调节器 - 调节极化激光或调节激光相的极化状态。通用调制器可以在三种不同的操作模式中使用:1)通用调制器正在改变线性偏振光的极化状态,从保持线性(不施加电压)到圆形(将四分之一波电压应用于线性)到线性,但旋转90°(施加了半波电压)。如果客户在激光调节器输出之后添加自己的偏振器,则此集合(通用激光调节器 +偏振器)正在改变激光灯的强度,因此它充当强度调节器。2)如果将四分之一波板放置在通用调节器的输出处,则可以根据施加的电压连续旋转线性极化光的极化平面。3)通用调制器还可以改变线性极化激光的相位,如果用于不同方向,请参阅LM13和LM0202激光调节器手册。可以将通用调制器用于极化和相位调制,但是使用通用调制器的相位调制需要与纯相调节器相比,如果通用调制器用作极化调制器,则分别比较了纯相调制器。
摘要 典型的直流放电由一端的负阴极和另一端的正阳极组成,两者之间由充满气体的间隙隔开,放置在一个长玻璃圆筒内。阴极和阳极之间需要几百伏的电压来维持放电。两个电极之间形成的放电类型取决于工作气体的压力、工作气体的性质、施加的电压和放电的几何形状。我们讨论了放电的电流-电压特性以及辉光放电区形成的独特结构。直流辉光放电出现在 0.5 – 300 Pa 压力下的放电电流范围从 μ A 到 mA。我们讨论了在直流辉光放电中观察到的各种现象,包括阴极区域、正柱和条纹。直流辉光放电由由于离子轰击而从阴极靶发射的二次电子维持。几十年来,直流辉光放电一直被用作溅射源。然后它通常以受阻异常辉光放电的形式运行,所需施加的电压在 2 – 5 kV 范围内。通常,阴极靶(要沉积的材料)连接到负电压电源(直流或射频),并且基底支架面向靶。相对较高的工作压力(2 至 4 Pa 范围内)、高施加电压以及需要导电靶,限制了直流辉光放电作为溅射源的应用。为了降低放电电压并扩大工作压力范围,通过在阴极靶后面添加永磁体来施加磁场,增加靶附近电子的寿命。这种布置称为磁控溅射放电。介绍了磁控溅射放电的各种配置及其应用。此外,还简要讨论了直流放电在化学分析中的应用、彭宁放电和空心阴极放电及其一些应用。
简介 磁阻效应最广为人知的是计算机硬盘的读取头或磁存储器 (MRAM) 应用,但它也非常适合用于传感器技术。它有着悠久的历史,各向异性磁阻 (AMR) 效应于 1857 年由开尔文勋爵首次发现。AMR 效应发生在铁磁材料中,例如结构为条带元素的镍铁层,其比阻抗随施加磁场的方向而变化。由于条带的特殊结构,电阻变化与施加的磁场在很宽的范围内成正比。这意味着通过巧妙设计传感器结构,可以非常高精度地检测非常小的磁场。
(15) 重大影响Y 指投资者对被投资方的经营和财务政策施加重大影响的能力。所有权的程度并非决定性的。直接或间接拥有被投资方20%或以上的股份,可以推定投资者对被投资方具有重大影响力。拥有注册会计师相关业务20%以下的股份,可以推定注册会计师对注册会计师相关业务不具有重大影响力。施加重大影响力的能力可以通过多种方式表明:董事会代表、参与政策制定过程、重大公司间交易、管理人员互换、技术依赖性以及投资者的所有权相对于其他股权集中度的程度。
本文件提及或讨论法定或监管权力的程度仅供参考。本文件不能替代那些法规或条例,读者应查阅法规或条例以了解其要求。本文件或其任何部分本身都不是规则或条例。因此,它不能改变或对 EPA、各州、公众或受监管社区施加具有法律约束力的要求。此外,任何表达的意图、建议或推荐均不会对 EPA、各州、部落、公众或受监管社区施加任何具有法律约束力的要求。机构决策者仍可自由选择实施本计划中描述的行动。此类实施取决于资源的可用性,并可能发生变化。
此后,患者从 2022 年 1 月至 2022 年 4 月接受了 12 个周期的低强度冲击波疗法 (Li-ESWT),每周或每两周对膀胱进行一次治疗,这是一项超说明书用药。我们使用了 PiezoWave [2] 冲击波装置(Richard Wolf GmbH 和 ELvation Medical,德国)。施加的脉冲次数、F10G10 施加器、施加区域和冲击波穿透力均与先前使用 Li-ESWT [2] 治疗膀胱过度活动症的研究类似。能量分布在 20 级时,最大能量通量密度 (EFD) 为 0.32 mJ/mm 2,频率 (fR) 为 8 Hz(脉冲/秒)。在整个 12 周的治疗期间,共施加了 36,000 次冲击波。医生开具了每日一次2.5毫克他达拉非的辅助治疗,作为非说明书用途,并持续至Li-ESWT治疗完成。在Li-ESWT联合2.5毫克他达拉非治疗后1周、3个月、6个月、9个月和12个月,患者的肺血管阻力(PVR)均低于50毫升。
图1:(a)与原位芯片接触的GO纤维的扫描电子显微镜图像。比例尺为5 µm。 (b)用于选定测量值(实线)显示的电流曲线的电压和包含每个测量值的当前范围(超过上一个测量值的电流范围(黑色虚线))(c)在所有测量值(黑色)和信封(红色)(黑色)和红色(红色)上,已确定的特定效率的双层型绘图。选定的测量值绘制并标记为蓝色。(d)在施加的电流上,用包络(红色)和选定的测量值(蓝色)在测量电流上测量(黑色)期间施加的功率密度的双层图。
应力强度因子 (SIF) 范围与疲劳裂纹扩展之间的相关性是应用于轻型结构的故障安全设计方法的有力工具。关键作用是精确计算疲劳载荷循环的 SIF。先进的材料加工可以塑造残余应力,使 SIF 计算成为一项具有挑战性的任务。虽然 SIF 叠加成功地解决了拉伸残余应力的考虑问题,但压缩残余应力的处理仍需澄清。这项工作展示了 SIF 叠加原理在包含高压缩残余应力的区域中的应用,这些区域会导致裂纹闭合效应。裂纹闭合取决于残余应力和施加应力的组合载荷,在本研究中被解释为裂纹几何形状的变化。因此,源(即施加或残余应力)与其结果(即相应的 SIF)之间的关系取决于源(即组合载荷)的相互作用。由于这种相互作用,残余应力引起的疲劳行为变化不能仅与残余或施加的 SIF 相关联。这项工作提出了应用 SIF 和残余 SIF 的两种替代定义,从而允许残余 SIF 或应用 SIF 与疲劳行为变化之间建立明确的相关性。