此预印本版的版权持有人于2024年7月19日发布。 https://doi.org/10.1101/2024.07.16.603642 doi:Biorxiv Preprint
摘要 人类的面孔是多变的;我们看起来各不相同。颅面疾病进一步增加了面部变化。为了了解颅面变异及其如何缓解,我们分析了斑马鱼 mef2ca 突变体。当这种转录因子编码基因发生突变时,斑马鱼会出现变化极大的颅面表型。多年来针对突变表型的低和高渗透性的选择性育种产生了对 mef2ca 突变具有弹性或敏感的菌株。在这里,我们比较了这些菌株之间的基因表达,结果显示选择性育种分别在低和高渗透性菌株中丰富了高和低 mef2ca 旁系同源物的表达。我们发现 mef2ca 旁系同源物的表达在未经选择的野生型斑马鱼中是可变的,这引发了这样的假设:旁系同源物表达的可遗传变异是突变表型严重程度和变异的基础。作为支持,对 mef2ca 旁系同源物、mef2aa、mef2b、mef2cb 和 mef2d 进行诱变,证明了旁系同源物的模块化缓冲作用。具体来说,一些旁系同源物缓冲严重性,而另一些则缓冲多变性。我们提出了一种新颖的表型变异机制模型,其中可变的残留旁系同源物表达缓冲发育。这些研究是理解面部变异机制的重要一步,包括一些具有遗传弹性的个体如何克服有害突变。
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该预印本版本的版权所有者,该版本发布于6月29日,2024年。 https://doi.org/10.1101/2024.06.28.601266 doi:biorxiv Preprint
Jean Ching-Yi Tien, 1,2 Jie Luo, 1,2,14 Yu Chang, 1,2,14 Yuping Zhang, 1,2,14 Yunhui Cheng, 1,2,14 Xiaoju Wang, 1,2 Jianzhang Yang, 3,4 Rahul Mannan, 1,2 Somnath Mahapatra, 1,2 Palak Shah, 1,2 Xiao-Ming Wang, 1,2 Abigail J. Todd, 1,2 Sanjana Eyunni, 1,2 Caleb Cheng, 1 Ryan J. Rebernick, 1,2 Lanbo Xiao, 1,2 Yi Bao, 1,2 James Neiswender, 5 Rachel Brough, 5 Stephen J. Pettitt, 5 Xuhong Cao, 1,2 Stephanie J.), arul@med.umich.edu (A.M.C.)https://doi.org/10.1016/j.xcrm.2024.101758
图1:可编程医学框架的概述,该框架将多种多样和临床数据与文献支持的疾病知识图,宠物建模管道和Geneterrain分析相结合。该过程始于基因组的疾病基因策略,包括遗传变异,差异表达和药物靶标(步骤0-1)和知识图构造(步骤2),然后进行宠物模型产生(步骤3)和参数优化(步骤4)。然后,将优化的模型用于宠物实验(步骤5),以预测新型的治疗靶标,最终导致Geneterrain知识图的产生(步骤6),以全面可视化多量表疾病机制和药物效应。这种综合方法旨在完善目标发现,指导药物重新利用和加速临床翻译。
• The Hippo pathway kinase cascade negatively regulates the activity of transcription cofactor YAP/TAZ in a complex with DNA-bound transcription factor TEAD1-4 • Mutations in the Hippo pathway that result in activation of YAP/TAZ/TEADs are prevalent in multiple cancers ( Lin et al., Nature Genetics 2015; McGowan et al., Genes Cancer 2017 ) • YAP/TAZ/TEADs transcriptional activity can also be induced upon inhibition of oncogenic drivers, leading to the emergence of drug tolerant "persister" cells and disease relapse ( Kurppa et al., Cancer Cell 2020) • IK-930 is a TEAD1 selective palmitoylation inhibitor (see poster #1646) that effectively inhibits the transcriptional activity of YAP • IK-930 combined with EGFRI或MEKI可以防止持久细胞的出现并减轻对这些靶向疗法的抵抗力•IK-930目前处于第一阶段临床发展(NCT05228015)
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,于2024年5月23日发布。 https://doi.org/10.1101/2024.02.14.580413 doi:Biorxiv Preprint
摘要 水稻黄斑驳病毒 (RYMV) 是非洲最严重的水稻疾病之一。RYMV 的管理具有挑战性。遗传抗性提供了最有效和最环保的控制。隐性抗性基因座 rymv2 (OsCPR5.1) 已在非洲水稻 (Oryza glaberrima) 中被鉴定,然而,渗入 Oryza sativa ssp。由于跨越障碍,粳稻和印度稻仍然具有挑战性。在这里,我们评估了两种水稻核孔蛋白旁系同源物 OsCPR5.1 (RYMV2) 和 OsCPR5.2 的 CRISPR/Cas9 基因组编辑是否可用于将 RYMV 抗性引入粳稻品种 Kitaake。两种旁系同源物均已被证实可弥补拟南芥 atcpr5 突变体的缺陷,表明存在部分冗余。尽管两种旁系同源物之间存在惊人的序列和结构相似性,但只有 o scpr5.1 功能丧失突变体完全具有抗性,而 oscpr5.2 功能丧失突变体仍然易感,这表明 OsCPR5.1 在 RYMV 易感性中起着特殊作用。值得注意的是,在 OsCPR5.1 的 N 端结构域(预计为非结构化)中存在短的框内删除或替换的编辑线对 RYMV 高度敏感。与单个拟南芥 AtCPR5 基因突变导致植物严重矮化不同,oscpr5.1 和 oscpr5.2 单敲除和双敲除突变体既没有表现出明显的生长缺陷,也没有表现出类似病变表型的症状,这可能反映了功能分化。OsCPR5.1 的特定编辑,同时保持 OsCPR5.2 活性,为在优良稻种系中产生 RYMV 抗性以及与其他 RYMV 抗性基因或其他性状有效叠加提供了一种有前途的策略。
基因复制是进化新颖性的来源。DNA甲基化可能通过其与基因表达的关联在重复基因的演化中起作用。虽然在少数个单个物种中对这种关系的研究程度有所不同,但这些结果在广泛的系统发育规模上具有不同的重复历史或人群中的种类,但尚不清楚。我们将比较表观基因组学方法应用于整个系统发育中的43种被子植物物种和928个拟南芥的种群,研究了DNA甲基化与旁系同源物进化的缔合。Genic DNA甲基化与重复类型,重复,序列进化和基因表达的年龄有差异化。整个基因组重复物通常用于仅CG基因体甲基化或未甲基化基因,而单基因的重复通常富含非CG甲基化或未甲基化基因。非CG甲基化,特别是最近的单基因重复项的特征。核心的被子植物基因家族分为那些优先保留旁系同源物和“抗复制”的家族的核心基因家族,这些家族在重复后会汇聚为单例。耐重复的家庭仍然具有寄生态副本,对于核心被子植物基因而言,富含非CG甲基化的核心基因。非CG甲基化的旁系同源物具有较高的序列演化速率,较高的存在频率 - 缺乏变化和更有限的表达。这表明非CG甲基化沉默对于在重复后保持剂量可能很重要,并且是分馏的前体。我们的结果表明,基因甲基化标记寄生虫基因之间的进化轨迹和命运不同,并且在复制后保持剂量。
他们的研究揭示了理解旁系同源基因演变的重要性(通过基因复制而产生的)在预测基因组编辑结果中的重要性。CSHL教授和HHMI研究员Zachary Lippman领导了这项研究。“那里有很多很棒的食物作物,”他说。“与'主要的'农作物相比,他们中有多少人没有受益?”